Full Text:   <2593>

Summary:  <1923>

CLC number: R587.1

On-line Access: 2017-03-08

Received: 2016-05-31

Revision Accepted: 2016-08-26

Crosschecked: 2017-02-01

Cited: 0

Clicked: 4815

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yong-liang Jiang

http://orcid.org/0000-0002-9937-7398

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.3 P.239-248

http://doi.org/10.1631/jzus.B1600247


Effects of electroacupuncture at 2 and 100 Hz on rat type 2 diabetic neuropathic pain and hyperalgesia-related protein expression in the dorsal root ganglion


Author(s):  Xiao-fen He, Jun-jun Wei, Sheng-yun Shou, Jian-qiao Fang, Yong-liang Jiang

Affiliation(s):  Department of Neurobiology and Acupuncture Research, the Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; more

Corresponding email(s):   fangjianqiao7532@163.com, jyl2182@126.com

Key Words:  Electroacupuncture, Type 2 diabetic neuropathic pain, Dorsal root ganglion, P2X3 receptor, Calcitonin gene-related peptide


Xiao-fen He, Jun-jun Wei, Sheng-yun Shou, Jian-qiao Fang, Yong-liang Jiang. Effects of electroacupuncture at 2 and 100 Hz on rat type 2 diabetic neuropathic pain and hyperalgesia-related protein expression in the dorsal root ganglion[J]. Journal of Zhejiang University Science B, 2017, 18(3): 239-248.

@article{title="Effects of electroacupuncture at 2 and 100 Hz on rat type 2 diabetic neuropathic pain and hyperalgesia-related protein expression in the dorsal root ganglion",
author="Xiao-fen He, Jun-jun Wei, Sheng-yun Shou, Jian-qiao Fang, Yong-liang Jiang",
journal="Journal of Zhejiang University Science B",
volume="18",
number="3",
pages="239-248",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600247"
}

%0 Journal Article
%T Effects of electroacupuncture at 2 and 100 Hz on rat type 2 diabetic neuropathic pain and hyperalgesia-related protein expression in the dorsal root ganglion
%A Xiao-fen He
%A Jun-jun Wei
%A Sheng-yun Shou
%A Jian-qiao Fang
%A Yong-liang Jiang
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 3
%P 239-248
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600247

TY - JOUR
T1 - Effects of electroacupuncture at 2 and 100 Hz on rat type 2 diabetic neuropathic pain and hyperalgesia-related protein expression in the dorsal root ganglion
A1 - Xiao-fen He
A1 - Jun-jun Wei
A1 - Sheng-yun Shou
A1 - Jian-qiao Fang
A1 - Yong-liang Jiang
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 3
SP - 239
EP - 248
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600247


Abstract: 
Objective: To investigate the analgesic effects of electroacupuncture (EA) at 2 and 100 Hz on type 2 diabetic neuropathic pain (DNP) and on the expressions of the p2X3 receptor and calcitonin gene-related peptide (CGRP) in the dorsal root ganglion (DRG). Methods: Rat type 2 DNP was induced by a high calorie and high sugar diet fed for 7 weeks, plus a single intraperitoneal injection of streptozotocin (STZ) after 5 weeks. EA at 2 and 100 Hz was carried out once every day after 7 weeks for 7 consecutive days. Body weight, serum fasting insulin (FINS), fasting blood glucose (FBG), insulin sensitivity index (ISI), and paw withdrawal latency (PWL) were measured. The expressions of L4–L6 DRG p2X3 receptors and CGRP were assessed by immunofluorescence. Results: Type 2 DNP was successfully induced as shown by the increased body weight, FINS, and FBG, as well as the reduced ISI and PWL. Expressions of p2X3 receptors and CGRP in L4–L6 DRGs increased. EA at both 2 and 100 Hz relieved type 2 DNP, but the analgesic effect of EA was stronger at 2 Hz. p2X3 receptor expression decreased in L4–L6 DRGs following EA at 2 Hz and in L5 and L6 DRGs following EA at 100 Hz. EA at both 2 and 100 Hz down-regulated CGRP overexpression in L4–L6 DRGs. Conclusions: These findings indicate that EA at 2 Hz is a good option for the management of type 2 DNP. The EA effect may be related to its down-regulation of the overexpressions of the DRG p2X3 receptors and CGRP in this condition.

研究2 Hz和100 Hz电针对2型糖尿病神经痛大鼠的镇痛作用以及对背根神经节致痛相关蛋白表达的影响

目的:研究2和100 Hz电针对2型糖尿病神经痛(DNP)大鼠的镇痛作用,以及对DNP大鼠背根神经节(DRG)上P2X3受体和降钙素相关基因肽(CGRP)表达的影响。
创新点:本研究首次选用2型DNP大鼠模型来研究电针治疗DNP的优势频率。研究证明2 Hz电针对2型DNP大鼠的镇痛作用以及对DRG上高表达的P2X3抑制作用优于100 Hz,为电针治疗DNP及其频率选择提供科学依据和阐释。
方法:将雄性SD大鼠分为对照组(腹腔注射柠檬酸钠缓冲液)和模型组(高脂高糖饲养联合腹腔注射 35 mg/kg链脲佐菌素(STZ))。模型组根据采用不同的电针频率分为以下三组:DNP组、DNP+2 Hz电针组、DNP+100 Hz电针组。采用足底测试仪检测大鼠足跖热痛阈(PWL),用酶联免疫吸附测定(ELISA)试剂盒检测大鼠空腹胰岛素(FINS)含量,用免疫荧光法检测DRG上的P2X3受体和CGRP的表达水平。
结论:2和100 Hz电针对2型DNP均有明显的镇痛作用,且2 Hz电针对2型DNP的镇痛作用优于 100 Hz电针(图2)。免疫荧光实验结果显示,2和100 Hz电针均能明显下调DRG中P2X3受体和CGRP的高表达(图3和4),且2 Hz电针对DRG中P2X3受体的抑制作用优于100 Hz电针(图3)。综上所述,2 Hz电针是治疗2型DNP较为理想的治疗手段。

关键词:电针;2型糖尿病神经痛;背根神经节;P2X3受体;降钙素基因相关肽

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alberti, K.G., Zimmet, P.Z., 1998. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med., 15(7):539-553.

[2]Bai, J., Zheng, S., Jiang, D., et al., 2015. Oxidative stress contributes to abnormal glucose metabolism and insulin sensitivity in two hyperlipidemia models. Int. J. Clin. Exp. Pathol., 8(10):13193-13200.

[3]Bernardini, N., Neuhuber, W., Reeh, P.W., et al., 2004. Morphological evidence for functional capsaicin receptor expression and calcitonin gene-related peptide exocytosis in isolated peripheral nerve axons of the mouse. Neuroscience, 126(3):585-590.

[4]Brown, M.J., Asbury, A.K., 1984. Diabetic neuropathy. Ann. Neurol., 15(1):2-12.

[5]Brussee, V., Guo, G., Dong, Y., et al., 2008. Distal degenerative sensory neuropathy in a long-term type 2 diabetes rat model. Diabetes, 57(6):1664-1673.

[6]Cady, R.J., Glenn, J.R., Smith, K.M., et al., 2011. Calcitonin gene-related peptide promotes cellular changes in trigeminal neurons and glia implicated in peripheral and central sensitization. Mol. Pain, 7:94.

[7]Chen, M., Gu, J.G., 2005. A P2X receptor-mediated nociceptive afferent pathway to lamina I of the spinal cord. Mol. Pain, 1:4.

[8]Cheng, R.S., Pomeranz, B., 1979. Electroacupuncture analgesia could be mediated by at least two pain-relieving mechanisms; endorphin and non-endorphin systems. Life Sci., 25(23):1957-1962.

[9]Cook, S.P., Vulchanova, L., Hargreaves, K.M., et al., 1997. Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature, 387(6632):505-508.

[10]Costigan, M., Scholz, J., Woolf, C.J., 2009. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu. Rev. Neurosci., 32:1-32.

[11]Dang, J.K., Wu, Y., Cao, H., et al., 2014. Establishment of a rat model of type II diabetic neuropathic pain. Pain Med., 15(4):637-646.

[12]Dyck, P.J., Kratz, K.M., Karnes, J.L., et al., 1993. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology, 43(4):817-824.

[13]El-Moselhy, M.A., Taye, A., Sharkawi, S.S., et al., 2011. The antihyperglycemic effect of curcumin in high fat diet fed rats. Role of TNF-α and free fatty acids. Food Chem. Toxicol., 49(5):1129-1140.

[14]Fang, J.Q., Du, J.Y., Liang, Y., et al., 2013a. Intervention of electroacupuncture on spinal p38 MAPK/ATF-2/VR-1 pathway in treating inflammatory pain induced by CFA in rats. Mol. Pain, 9:13.

[15]Fang, J.Q., Jiang, Y.L., Qiu, S.C., et al., 2013b. Involvement of peripheral beta-endorphin and mu, delta, kappa opioid receptors in electro acupuncture analgesia for prolonged inflammatory pain of rats. Eur. J. Inflamm., 11(2):375-383.

[16]Gallou-Kabani, C., Vigé, A., Gross, M.S., et al., 2007. C57BL/6J and A/J mice fed a high-fat diet delineate components of metabolic syndrome. Obesity, 15(8):1996-2005.

[17]Gooch, C., Podwall, D., 2004. The diabetic neuropathies. Neurologist, 10(6):311-322.

[18]Harati, Y., 1996. Diabetes and the nervous system. Endocrinol. Metab. Clin. North Am., 25(2):325-359.

[19]Hayden, M.R., Tyagi, S.C., Kerklo, M.M., et al., 2005. Type 2 diabetes mellitus as a conformational disease. JOP, 6(4):287-302.

[20]Hong, S., Morrow, T.J., Paulson, P.E., et al., 2004. Early painful diabetic neuropathy is associated with differential changes in tetrodotoxin-sensitive and -resistant sodium channels in dorsal root ganglion neurons in the rat. J. Biol. Chem., 279(28):29341-29350.

[21]Hwang, H.S., Yang, E.J., Lee, S.M., et al., 2011. Antiallodynic effects of electroacupuncture combined with MK-801 treatment through the regulation of p35/p25 in experimental diabetic neuropathy. Exp. Neurobiol., 20(3):144-152.

[22]Inoue, K., 2006. The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol. Ther., 109(1-2):210-226.

[23]Ishiko, N., Yamamoto, T., Murayama, N., et al., 1978. Electroacupuncture: current strength-duration relationship for initiation of hypesthesia in man. Neurosci. Lett., 8(4):273-276.

[24]Jagodic, M.M., Pathirathna, S., Nelson, M.T., et al., 2007. Cell-specific alterations of T-type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons. J. Neurosci., 27(12):3305-3316.

[25]Jiang, Y.L., Ning, Y., Liu, Y.Y., et al., 2011. Effects of preventive acupuncture on streptozotocin-induced hyperglycemia in rats. J. Endocrinol. Invest., 34(10):e355-e361.

[26]Jiang, Y.L., Yin, X.H., Shen, Y.F., et al., 2013. Low frequency electroacupuncture alleviated spinal nerve ligation induced mechanical allodynia by inhibiting TRPV1 upregulation in ipsilateral undamaged dorsal root ganglia in rats. Evid. Based Complement. Alternat. Med., 2013:170910.

[27]Jiang, Y.L., He, X.F., Shen, Y.F., et al., 2015. Analgesic roles of peripheral intrinsic met-enkephalin and dynorphin A in long-lasting inflammatory pain induced by complete Freund’s adjuvant in rats. Exp. Ther. Med., 9(6):2344-2348.

[28]Jimenez-Andrade, J.M., Bloom, A.P., Stake, J.I., et al., 2010. Pathological sprouting of adult nociceptors in chronic prostate cancer-induced bone pain. J. Neurosci., 30(44):14649-14656.

[29]Kahn, B.B., 1998. Type 2 diabetes: when insulin secretion fails to compensate for insulin resistance. Cell, 92(5):593-596.

[30]Khan, G.M., Chen, S.R., Pan, H.L., 2002. Role of primary afferent nerves in allodynia caused by diabetic neuropathy in rats. Neuroscience, 114(2):291-299.

[31]Kobayashi, M., Ohno, T., Tsuchiya, T., et al., 2004. Characterization of diabetes-related traits in MSM and JF1 mice on high-fat diet. J. Nutr. Biochem., 15(10):614-621.

[32]Lin, Y., Sun, Z., 2010. Current views on type 2 diabetes. J. Endocrinol., 204(1):1-11.

[33]Manni, L., Florenzano, F., Aloe, L., 2011. Electroacupuncture counteracts the development of thermal hyperalgesia and the alteration of nerve growth factor and sensory neuromodulators induced by streptozotocin in adult rats. Diabetologia, 54(7):1900-1908.

[34]Maser, R.E., Steenkiste, A.R., Dorman, J.S., et al., 1989. Epidemiological correlates of diabetic neuropathy: report from Pittsburgh epidemiology of diabetes complications study. Diabetes, 38(11):1456-1461.

[35]Migita, K., Moriyama, T., Koguchi, M., et al., 2009. Modulation of P2X receptors in dorsal root ganglion neurons of streptozotocin-induced diabetic neuropathy. Neurosci. Lett., 452(2):200-203.

[36]Muniyappa, R., Lee, S., Chen, H., et al., 2008. Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am. J. Physiol. Endocrinol. Metab., 294(1):E15-E26.

[37]Muoio, D.M., Newgard, C.B., 2008. Molecular and metabolic mechanisms of insulin resistance and β-cell failure in type 2 diabetes. Nat. Rev. Mol. Cell Biol., 9(3):193-205.

[38]Nori, S.L., Rocco, M.L., Florenzano, F., et al., 2013. Increased nerve growth factor signaling in sensory neurons of early diabetic rats is corrected by electroacupuncture. Evid. Based Complement. Alternat. Med., 2013(12):652735.

[39]Pabbidi, R.M., Cao, D.S., Parihar, A., et al., 2008. Direct role of streptozotocin in inducing thermal hyperalgesia by enhanced expression of transient receptor potential vanilloid 1 in sensory neurons. Mol. Pharmacol., 73(3):995-1004.

[40]Petruska, J.C., Cooper, B.Y., Johnson, R.D., et al., 2000. Distribution patterns of different P2x receptor phenotypes in acutely dissociated dorsal root ganglion neurons of adult rats. Exp. Brain Res., 134(1):126-132.

[41]Price, T.J., Flores, C.M., 2007. Critical evaluation of the colocalization between calcitonin gene-related peptide, substance P, transient receptor potential vanilloid subfamily type 1 immunoreactivities, and isolectin B4 binding in primary afferent neurons of the rat and mouse. J. Pain, 8(3):263-272.

[42]Raddant, A.C., Russo, A.F., 2011. Calcitonin gene-related peptide in migraine: intersection of peripheral inflammation and central modulation. Expert Rev. Mol. Med., 13(201):e36.

[43]Sharma, S., Kulkarni, S.K., Agrewala, J.N., et al., 2006. Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur. J. Pharmacol., 536(3):256-261.

[44]Silva, J.R.T., Silva, M.L., Prado, W.A., 2011. Analgesia induced by 2- or 100-Hz electroacupuncture in the rat tail-flick test depends on the activation of different descending pain inhibitory mechanisms. J. Pain, 12(1):51-60.

[45]Simonetti, M., Giniatullin, R., Fabbretti, E., 2008. Mechanisms mediating the enhanced gene transcription of P2X3 receptor by calcitonin gene-related peptide in trigeminal sensory neurons. J. Biol. Chem., 283(27):18743-18752.

[46]Surwit, R.S., Kuhn, C.M., Cochrane, C., et al., 1988. Diet-induced type II diabetes in C57BL/6J mice. Diabetes, 37(9):1163-1167.

[47]Weisberg, S.P., Leibel, R., Tortoriello, D.V., 2008. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology, 149(7):3549-3558.

[48]Wild, S., Roglic, G., Green, A., et al., 2004. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 27(5):1047-1053.

[49]Winzell, M.S., Ahrén, B., 2004. The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes, 53(Suppl. 3):S215-S219.

[50]Xu, G.Y., Li, G., Liu, N., et al., 2011. Mechanisms underlying purinergic P2X3 receptor-mediated mechanical allodynia induced in diabetic rats. Mol. Pain, 7(1):60.

[51]Zimmet, P., Alberti, K.G., Shaw, J., 2001. Global and societal implications of the diabetes epidemic. Nature, 414(6865):782-787.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE