Full Text:   <925>

Summary:  <35>

Suppl. Mater.: 

CLC number: 

On-line Access: 2025-03-13

Received: 2023-08-01

Revision Accepted: 2023-11-30

Crosschecked: 2025-03-13

Cited: 0

Clicked: 1178

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Guoli YANG

https://orcid.org/0000-0002-1780-8757

Yue XI

https://orcid.org/0000-0002-8001-8969

Ying WANG

https://orcid.org/0000-0001-6983-508X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2025 Vol.26 No.3 P.254-268

http://doi.org/10.1631/jzus.B2300531


SP7 transcription factor ameliorates bone defect healing in low-density lipoprotein receptor-related protein 5 (LRP5)-dependent osteoporosis mice


Author(s):  Yue XI, Qifeng JIANG, Wei DAI, Chaozhen CHEN, Yang WANG, Xiaoyan MIAO, Kaichen LAI, Zhiwei JIANG, Guoli YANG, Ying WANG

Affiliation(s):  Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province,Hangzhou310000,China; more

Corresponding email(s):   guo_li1214@zju.edu.cn, 7314032@zju.edu.cn

Key Words:  Gene therapy, Low-density lipoprotein receptor-related protein 5 (LRP5), Transcription factor osterix (SP7), Osteoporosis, Defect healing


Yue XI, Qifeng JIANG, Wei DAI, Chaozhen CHEN, Yang WANG, Xiaoyan MIAO, Kaichen LAI, Zhiwei JIANG, Guoli YANG, Ying WANG. SP7 transcription factor ameliorates bone defect healing in low-density lipoprotein receptor-related protein 5 (LRP5)-dependent osteoporosis mice[J]. Journal of Zhejiang University Science B, 2025, 26(3): 254-268.

@article{title="SP7 transcription factor ameliorates bone defect healing in low-density lipoprotein receptor-related protein 5 (LRP5)-dependent osteoporosis mice",
author="Yue XI, Qifeng JIANG, Wei DAI, Chaozhen CHEN, Yang WANG, Xiaoyan MIAO, Kaichen LAI, Zhiwei JIANG, Guoli YANG, Ying WANG",
journal="Journal of Zhejiang University Science B",
volume="26",
number="3",
pages="254-268",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2300531"
}

%0 Journal Article
%T SP7 transcription factor ameliorates bone defect healing in low-density lipoprotein receptor-related protein 5 (LRP5)-dependent osteoporosis mice
%A Yue XI
%A Qifeng JIANG
%A Wei DAI
%A Chaozhen CHEN
%A Yang WANG
%A Xiaoyan MIAO
%A Kaichen LAI
%A Zhiwei JIANG
%A Guoli YANG
%A Ying WANG
%J Journal of Zhejiang University SCIENCE B
%V 26
%N 3
%P 254-268
%@ 1673-1581
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2300531

TY - JOUR
T1 - SP7 transcription factor ameliorates bone defect healing in low-density lipoprotein receptor-related protein 5 (LRP5)-dependent osteoporosis mice
A1 - Yue XI
A1 - Qifeng JIANG
A1 - Wei DAI
A1 - Chaozhen CHEN
A1 - Yang WANG
A1 - Xiaoyan MIAO
A1 - Kaichen LAI
A1 - Zhiwei JIANG
A1 - Guoli YANG
A1 - Ying WANG
J0 - Journal of Zhejiang University Science B
VL - 26
IS - 3
SP - 254
EP - 268
%@ 1673-1581
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2300531


Abstract: 
Loss-of-function variants of low-density lipoprotein receptor-related protein 5 (LRP5) can lead to reduced bone formation, culminating in diminished bone mass. Our previous study reported transcription factor osterix (SP7)‍-binding sites on the LRP5 promoter and its pivotal role in upregulating LRP5 expression during implant osseointegration. However, the potential role of SP7 in ameliorating LRP5-dependent osteoporosis remained unknown. In this study, we used mice with a conditional knockout (cKO) ofLRP5 in mature osteoblasts, which presented decreased osteogenesis. The in vitro experimental results showed that SP7 could promote LRP5 expression, thereby upregulating the osteogenic markers such as alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2), andβ‍-catenin (P<0.05). For the in vivo experiment, the SP7 overexpression virus was injected into a bone defect model ofLRP5 cKO mice, resulting in increased bone mineral density (BMD) (P<0.001) and volumetric density (bone volume (BV)/total volume (TV)) (P<0.001), and decreased trabecular separation (Tb.‍Sp) (P<0.05). These data suggested that SP7 could ameliorate bone defect healing inLRP5 cKO mice. Our study provides new insights into potential therapeutic opportunities for ameliorating LRP5-dependent osteoporosis.

转录因子SP7改善低密度脂蛋白受体相关蛋白5(LRP5)条件性缺失小鼠的骨缺损愈合

席月1, 蒋奇锋2, 戴薇1, 陈朝真1 ,王洋1, 缪晓燕1, 赖恺晨1, 姜治伟1, 杨国利1, 王莹1
1浙江大学医学院附属口腔医院,浙江大学口腔医学院,浙江省口腔疾病临床医学研究中心,浙江省口腔生物医学研究重点实验室,浙江大学癌症研究院,口腔生物材料与器械浙江省工程研究中心, 中国杭州市, 310000
2浙江大学口腔医学院, 中国杭州市, 310058
摘要:低密度脂蛋白受体相关蛋白5(LRP5)的功能丧失突变将导致骨形成减少,从而最终导致低骨量的表型。先前研究报道了LRP5启动子存在转录因子SP7的结合位点。此外,SP7在种植体骨整合过程中具有上调LRP5表达的关键作用。但SP7在改善LRP5缺失所致骨质疏松的作用机制尚不明确。本研究使用成骨细胞LRP5条件性缺失小鼠展开相关研究,该小鼠具有骨质疏松表型。细胞实验结果表明,SP7可促进LRP5表达并上调包括碱性磷酸酶(ALP)、Runt相关转录因子2(Runx2)和β-catenin等成骨相关基因的表达(P<0.05)。体内实验将SP7过表达慢病毒注射到LRP5条件性敲除小鼠骨缺损区域,愈合4周后,与对照组相比,SP7治疗组骨密度(BMD)(P<0.001)和骨体积分数(BV/TV)(P<0.001)显著升高,而骨小梁分离系数(Tb.Sp)显著减小(P<0.05)。上述数据表明,SP7可改善LRP5条件性缺失所致小鼠骨质疏松的骨缺损愈合过程。该研究为改善LRP5缺失所致骨质疏松提供了潜在治疗策略。

关键词:基因治疗;低密度脂蛋白受体相关蛋白5(LRP5);转录因子(SP7);骨质疏松;缺损愈合

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]BaronR,KneisselM,2013.WNT signaling in bone homeostasis and disease: from human mutations to treatments.Nat Med,19(2):179-192.

[2]BleichNK,KallaiI,LiebermanJR,et al.,2012.Gene therapy approaches to regenerating bone.Adv Drug Deliv Rev,64(12):1320-1330.

[3]CaiH,ZhangHM,HeWT,et al.,2023.Iron accumulation and its impact on osteoporotic fractures in postmenopausal women.J Zhejiang Univ-Sci B (Biomed & Biotechnol),24(4):301-311.

[4]CastrogiovanniP,TrovatoFM,SzychlinskaMA,et al.,2016.The importance of physical activity in osteoporosis.From the molecular pathways to the clinical evidence. Histol Histopathol,31(11):1183-1194.

[5]CauleyJA,GiangregorioL,2020.Physical activity and skeletal health in adults.Lancet Diabetes Endocrinol,8(2):150-162.

[6]CuiYJ,NiziolekPJ,MacDonaldBT,et al.,2011.Lrp5 functions in bone to regulate bone mass.Nat Med,17(6):684-691.

[7]FukudaM,YoshizawaT,KarimMF,et al.,2018.SIRT7 has a critical role in bone formation by regulating lysine acylation of SP7/osterix.Nat Commun,9:2833.

[8]GongYQ,SleeRB,FukaiN,et al.,2001.LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development.Cell,107(4):513-523.

[9]HafnerM,ZimmermannK,PottgiesserJ,et al.,1995.A purine-rich sequence in the human BM-40 gene promoter region is a prerequisite for maximum transcription.Matrix Biol,14(9):733-741.

[10]HeGP,NieJJ,LiuX,et al.,2023.Zinc oxide nanoparticles inhibit osteosarcoma metastasis by downregulating β-catenin via HIF-1α/BNIP3/LC3B-mediated mitophagy pathway.Bioact Mater,19:690-702.

[11]HillTP,SpäterD,TaketoMM,et al.,2005.Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes.Dev Cell,8(5):727-738.

[12]HofbauerLC,MaischB,SchaeferJR,2002.High bone density due to a mutation in LDL-receptor-related protein 5.N Engl J Med,347(12):943-944.

[13]HoshikawaS,ShimizuK,WatahikiA,et al.,2020.Phosphorylation-dependent osterix degradation negatively regulates osteoblast differentiation.FASEB J,34(11):14930-14945.

[14]JiangZW,WangHM,YuK,et al.,2017.Light-controlled BMSC sheet-implant complexes with improved osteogenesis via an LRP5/β‍-catenin/Runx2 regulatory loop. ACS Appl Mater Interfaces,9(40):34674-34686.

[15]JiangZW,YuK,FengYT,et al.,2020.An effective light activated TiO2 nanodot platform for gene delivery within cell sheets to enhance osseointegration.Chem Eng J,402:126170.

[16]KarikóK,BucksteinM,NiHP,et al.,2005.Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA.Immunity,23(2):165-175.

[17]KatchkovskyS,ChatterjeeB,Abramovitch-DahanCV,et al.,2022.Competitive blocking of LRP4-sclerostin binding interface strongly promotes bone anabolic functions.Cell Mol Life Sci,79(2):113.

[18]KhanA,FornesO,StiglianiA,et al.,2018.JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework.Nucleic Acids Res,46(D1):D1284.

[19]KimHJ,LeeS,ParkJM,et al.,2021.Development of a three-layer consecutive gene delivery system for enhanced bone regeneration.Biomaterials,277:121104.

[20]KimJH,SeongS,KimK,et al.,2016.Downregulation of Runx2 by 1,25-dihydroxyvitamin D3 induces the transdifferentiation of osteoblasts to adipocytes.Int J Mol Sci,17(5):770.

[21]KnightMN,KaruppaiahK,LoweM,et al.,2018.R-spondin-2 is a Wnt agonist that regulates osteoblast activity and bone mass.Bone Res,6:24.

[22]KootstraNA,VermaIM,2003.Gene therapy with viral vectors.Annu Rev Pharmacol Toxicol,43:413-439.

[23]LambertSA,JolmaA,CampitelliLF,et al.,2018.The human transcription factors.Cell,175(2):598-599.

[24]LedoAM,SenraA,Rilo-AlvarezH,et al.,2020.mRNA-activated matrices encoding transcription factors as primers of cell differentiation in tissue engineering.Biomaterials,247:120016.

[25]LeeTI,YoungRA,2013.Transcriptional regulation and its misregulation in disease.Cell,152(6):1237-1251.

[26]LeuchtP,LeeS,YimN,2019.Wnt signaling and bone regeneration: can’t have one without the other.Biomaterials,196:46-50.

[27]LimWH,LiuB,MahSJ,et al.,2015.Alveolar bone turnover and periodontal ligament width are controlled by Wnt.J Periodontol,86(2):319-326.

[28]LittleRD,FolzC,ManningSP,et al.,2002.A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait.Am J Hum Genet,70(1):11-19.

[29]LuiJC,RaimannA,HojoH,et al.,2022.A neomorphic variant in SP7 alters sequence specificity and causes a high-turnover bone disorder.Nat Commun,13:700.

[30]MeadTJ,2020.Alizarin red and Alcian blue preparations to visualize the skeleton.Methods Mol Biol,2043:207-212.

[31]Muñoz-GarachA,García-FontanaB,Muñoz-TorresM,2020.Nutrients and dietary patterns related to osteoporosis.Nutrients,12(7):1986.

[32]NakashimaK,ZhouX,KunkelG,et al.,2002.The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation.Cell,108(1):17-29.

[33]RigueurD,LyonsKM,2014.Whole-mount skeletal staining.Methods Mol Biol,1130:113-121.

[34]Rilo-AlvarezH,LedoAM,VidalA,et al.,2021.Delivery of transcription factors as modulators of cell differentiation.Drug Deliv Transl Res,11(2):426-444.

[35]SchlakeT,ThessA,ThranM,et al.,2019.mRNA as novel technology for passive immunotherapy.Cell Mol Life Sci,76(2):301-328.

[36]SongKH,NamYJ,LuoX,et al.,2012.Heart repair by reprogramming non-myocytes with cardiac transcription factors.Nature,485(7400):599-604.

[37]SongLG,LiuML,OnoN,et al.,2012.Loss of Wnt/β‍-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. J Bone Miner Res,27(11):2344-2358.

[38]TuQS,ValverdeP,LiS,et al.,2007.Osterix overexpression in mesenchymal stem cells stimulates healing of critical-sized defects in murine calvarial bone.Tissue Eng,13(10):2431-2440.

[39]WangB,HuangSY,PanLN,et al.,2013.Enhancement of bone formation by genetically engineered human umbilical cord-derived mesenchymal stem cells expressing osterix.Oral Surg Oral Med Oral Pathol Oral Radiol,116(4):e221-e229.

[40]WangJS,KamathT,MazurCM,et al.,2021.Control of osteocyte dendrite formation by Sp7 and its target gene osteocrin.Nat Commun,12:6271.

[41]WangPP,Logeart-AvramoglouD,PetiteH,et al.,2020.Co-delivery of NS1 and BMP2 mRNAs to murine pluripotent stem cells leads to enhanced BMP-2 expression and osteogenic differentiation.Acta Biomater,108:337-346.

[42]WisitrasameewongW,ChampaiboonC,SurisaengT,et al.,2022.The impact of mRNA technology in regenerative therapy: lessons for oral tissue regeneration.J Dent Res,101(9):1015-1024.

[43]WitcherPC,MinerSE,HoranDJ,et al.,2018.Sclerostin neutralization unleashes the osteoanabolic effects of Dkk1 inhibition.JCI Insight,3(11):e98673.

[44]XiangL,MaL,WeiN,et al.,2017.Effect of lentiviral vector overexpression α‍-calcitonin gene-related peptide on titanium implant osseointegration in α-CGRP-deficient mice. Bone,94:135-140.

[45]XuB,ZhangJ,BrewerE,et al.,2009.Osterix enhances BMSC-associated osseointegration of implants.J Dent Res,88(11):1003-1007.

[46]XuJK,HuPJ,ZhangXT,et al.,2022.Magnesium implantation or supplementation ameliorates bone disorder in CFTR-mutant mice through an ATF4-dependent Wnt/β‍-catenin signaling. Bioact Mater,8:95-108.

[47]YuK,JiangZW,MiaoXY,et al.,2022.circRNA422 enhanced osteogenic differentiation of bone marrow mesenchymal stem cells during early osseointegration through the SP7/LRP5 axis.Mol Ther,30(10):3226-3240.

[48]ZhongZD,Zylstra-DiegelCR,SchumacherCA,et al.,2012.Wntless functions in mature osteoblasts to regulate bone mass.Proc Natl Acad Sci USA,109(33):E2197-E2204.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE