Full Text:   <1531>

Summary:  <1269>

Suppl. Mater.: 

CLC number: Q291

On-line Access: 2017-12-05

Received: 2017-03-10

Revision Accepted: 2017-05-30

Crosschecked: 2017-11-15

Cited: 0

Clicked: 3193

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.12 P.1046-1054

http://doi.org/10.1631/jzus.B1700129


Kinesin KIF4A is associated with chemotherapeutic drug resistance by regulating intracellular trafficking of lung resistance-related protein


Author(s):  Li-na Pan, Yuan Zhang, Chang-jun Zhu, Zhi-xiong Dong

Affiliation(s):  Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China; more

Corresponding email(s):   skydzx@tjnu.edu.cn

Key Words:  KIF4A, Lung resistance-related protein (LRP), Drug resistance


Li-na Pan, Yuan Zhang, Chang-jun Zhu, Zhi-xiong Dong. Kinesin KIF4A is associated with chemotherapeutic drug resistance by regulating intracellular trafficking of lung resistance-related protein[J]. Journal of Zhejiang University Science B, 2017, 18(12): 1046-1054.

@article{title="Kinesin KIF4A is associated with chemotherapeutic drug resistance by regulating intracellular trafficking of lung resistance-related protein",
author="Li-na Pan, Yuan Zhang, Chang-jun Zhu, Zhi-xiong Dong",
journal="Journal of Zhejiang University Science B",
volume="18",
number="12",
pages="1046-1054",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1700129"
}

%0 Journal Article
%T Kinesin KIF4A is associated with chemotherapeutic drug resistance by regulating intracellular trafficking of lung resistance-related protein
%A Li-na Pan
%A Yuan Zhang
%A Chang-jun Zhu
%A Zhi-xiong Dong
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 12
%P 1046-1054
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1700129

TY - JOUR
T1 - Kinesin KIF4A is associated with chemotherapeutic drug resistance by regulating intracellular trafficking of lung resistance-related protein
A1 - Li-na Pan
A1 - Yuan Zhang
A1 - Chang-jun Zhu
A1 - Zhi-xiong Dong
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 12
SP - 1046
EP - 1054
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1700129


Abstract: 
Multidrug resistance (MDR) is the major impediment to cancer chemotherapy. The expression of lung resistance-related protein (LRP), a non-ATP-binding cassette (ABC) transporter, is high in tumor cells, resulting in their resistance to a variety of cytotoxic drugs. However, the function of LRP in tumor drug resistance is not yet explicit. Our previous studies had shown that Kinesin KIF4A was overexpressed in cisplatin (DDP)-resistant human lung adenocarcinoma cells (A549/DDP cells) compared with A549 cells. The expression of KIF4A in A549 or A549/DDP cells significantly affects cisplatin resistance but the detailed mechanisms remain unclear. Here, we performed co-immunoprecipitation experiments to show that the tail domain of KIF4A interacted with the N-terminal of LRP. Immunofluorescence images showed that both the ability of binding to LRP and the motility of KIF4A were essential for the dispersed cytoplasm distribution of LRP. Altogether, our results shed light on a potential mechanism in that motor protein KIF4A promotes drug resistance of lung adenocarcinoma cells through transporting LRP-based vaults along microtubules towards the cell membrane. Thus KIF4A might be a cisplatin resistance-associated protein and serves as a potential target for chemotherapeutic drug resistance in lung cancer.

驱动蛋白KIF4A通过调节肺耐药相关蛋白LRP的胞内运输参与肿瘤耐药

目的:探讨驱动蛋白KIF4A调节肺耐药相关蛋白LRP在细胞内分布的作用机制,及其在肿瘤耐药过程中的作用。
创新点:首次发现驱动蛋白KIF4A的C端区与肺耐药相关蛋白LRP的N端区结合,且KIF4A调节LRP在胞内分布依赖KIF4A的N端马达结构域。
方法:应用免疫共沉淀和免疫荧光技术检测KIF4A与LRP的结合。根据KIF4A及LRP蛋白结构,构建绿色荧光蛋白(GFP)融合KIF4A截短突变质粒及Flag融合LRP截短突变质粒,免疫沉淀分析KIF4A与LRP相互作用区域。通过RNA干涉(RNAi)内源KIF4A,外源转入KIF4A截短突变体质粒,检测LRP在胞内分布。
结论:本实验中免疫沉淀及免疫荧光结果显示,KIF4A与LRP结合,且在微管上有共定位(图1)。截短突变体免疫沉淀实验结果表明,KIF4A的C端尾部结构域与LRP的N端区结合(图2),RNAi敲降内源KIF4A表达导致LRP聚集在细胞核周围(图3),外源表达全长KIF4A可恢复LRP在胞内弥散状定位,但外源表达KIF4A的C端或N端截短突变无法恢复LRP的胞内定位,仍聚集在核周区域(图4)。综上所述,驱动蛋白KIF4A可与LRP结合,并调节LRP在胞内定位,KIF4A的C端尾部结构域与LRP结合,N端马达结构域促进LRP在胞内运输,二者缺一不可。

关键词:驱动蛋白(KIF4A);肺耐药相关蛋白(LRP);耐药

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Chung, J.H., Ginn-Pease, M.E., Eng, C., 2005. Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) has nuclear localization signal-like sequences for nuclear import mediated by major vault protein. Cancer Res., 65(10):4108-4116.

[2]Germann, U.A., 1996. P-glycoprotein—a mediator of multidrug resistance in tumour cells. Eur. J. Cancer, 32(6):927-944.

[3]Gottesman, M.M., Fojo, T., Bates, S.E., 2002. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer, 2(1):48-58.

[4]Han, M., Lv, Q., Tang, X.J., et al., 2012. Overcoming drug resistance of MCF-7/ADR cells by altering intracellular distribution of doxorubicin via MVP knockdown with a novel siRNA polyamidoamine-hyaluronic acid complex. J. Control. Release, 163(2):136-144.

[5]Kathawala, R.J., Gupta, P., Ashby, C.R., et al., 2015. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist. Updat., 18:1-17.

[6]Kickhoefer, V.A., Poderycki, M.J., Chan, E.K., et al., 2002. The La RNA-binding protein interacts with the vault RNA and is a vault-associated protein. J. Biol. Chem., 277(43):41282-41286.

[7]Martinez, N.W., Xue, X., Berro, R.G., et al., 2008. Kinesin KIF4 regulates intracellular trafficking and stability of the human immunodeficiency virus type 1 Gag polyprotein. J. Virol., 82(20):9937-9950.

[8]Midorikawa, R., Takei, Y., Hirokawa, N., 2006. KIF4 motor regulates activity-dependent neuronal survival by suppressing PARP-1 enzymatic activity. Cell, 125(2):371-383.

[9]Mossink, M.H., van Zon, A., Franzel-Luiten, E., et al., 2002. Disruption of the murine major vault protein (MVP/LRP) gene does not induce hypersensitivity to cytostatics. Cancer Res., 62(24):7298-7304.

[10]Mossink, M.H., van Zon, A., Scheper, R.J., et al., 2003. Vaults: a ribonucleoprotein particle involved in drug resistance? Oncogene, 22(47):7458-7467.

[11]Scheffer, G.L., Wijngaard, P.L., Flens, M.J., et al., 1995. The drug resistance-related protein LRP is the human major vault protein. Nat. Med., 1(6):578-582.

[12]Scheffer, G.L., Schroeijers, A.B., Izquierdo, M.A., et al., 2000. Lung resistance-related protein/major vault protein and vaults in multidrug-resistant cancer. Curr. Opin. Oncol., 12(6):550-556.

[13]Scheper, R.J., Broxterman, H.J., Scheffer, G.L., et al., 1993. Overexpression of a M(r) 110 000 vesicular protein in non-P-glycoprotein-mediated multidrug resistance. Cancer Res., 53(7):1475-1479.

[14]Slesina, M., Inman, E.M., Moore, A.E., et al., 2006. Movement of vault particles visualized by GFP-tagged major vault protein. Cell Tissue Res., 324(3):403-410.

[15]Steiner, E., Holzmann, K., Elbling, L., et al., 2006. Cellular functions of vaults and their involvement in multidrug resistance. Curr. Drug Targets, 7(8):923-934.

[16]Taniwaki, M., Takano, A., Ishikawa, N., et al., 2007. Activation of KIF4A as a prognostic biomarker and therapeutic target for lung cancer. Clin. Cancer Res., 13(22):6624-6631.

[17]Trussardi, A., Poitevin, G., Gorisse, M.C., et al., 1998. Sequential overexpression of LRP and MRP but not P-gp 170 in VP16-selected A549 adenocarcinoma cells. Int. J. Oncol., 13(3):543-548.

[18]van Zon, A., Mossink, M.H., Schoester, M., et al., 2002. Structural domains of vault proteins: a role for the coiled coil domain in vault assembly. Biochem. Biophys. Res. Commun., 291(3):535-541.

[19]van Zon, A., Mossink, M.H., Houtsmuller, A.B., et al., 2006. Vault mobility depends in part on microtubules and vaults can be recruited to the nuclear envelope. Exp. Cell Res., 312(3):245-255.

[20]Wandke, C., Barisic, M., Sigl, R., et al., 2012. Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis. J. Cell Biol., 198(5):847-863.

[21]Willemsen, M.H., Ba, W., Wissink-Lindhout, W.M., et al., 2014. Involvement of the kinesin family members KIF4A and KIF5C in intellectual disability and synaptic function. J. Med. Genet., 51(7):487-494.

[22]Wu, G., Zhou, L., Khidr, L., et al., 2008. A novel role of the chromokinesin Kif4A in DNA damage response. Cell Cycle, 7(13):2013-2020.

[23]Xiao, N., Fu, C.H., Lin, Y.N., et al., 2016. Overexpression of chromosome kinesin protein KIF4A enhance cisplatin resistance in A549/DDP cells. Int. J. Clin. Exp. Pathol., 9(3):3331-3339.

[24]Yang, J., Kickhoefer, V.A., Ng, B.C., et al., 2010. Vaults are dynamically unconstrained cytoplasmic nanoparticles capable of half vault exchange. ACS Nano, 4(12):7229-7240.

[25]Yu, Z., Fotouhi-Ardakani, N., Wu, L., et al., 2002. PTEN associates with the vault particles in HeLa cells. J. Biol. Chem., 277(43):40247-40252.

[26]Zhang, W., Zhou, H., Yu, Y., et al., 2016. Combination of gambogic acid with cisplatin enhances the antitumor effects on cisplatin-resistant lung cancer cells by downregulating MRP2 and LRP expression. OncoTargets Ther., 9:3359-3368.

[27]Zhu, C., Jiang, W., 2005. Cell cycle-dependent translocation of PRC1 on the spindle by Kif4 is essential for midzone formation and cytokinesis. Proc. Natl. Acad. Sci. USA, 102(2):343-348.

[28]Zhu, C., Zhao, J., Bibikova, M., et al., 2005. Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol. Biol. Cell, 16(7):3187-3199.

[29]Zhu, C.L., Cheng, D.Z., Liu, F., et al., 2015. Hepatitis B virus upregulates the expression of kinesin family member 4A. Mol. Med. Rep., 12(3):3503-3507.

[30]List of electronic supplementary materials

[31]Fig. S1 mRNA and protein expression of LRP and KIF4A in A549 and A549/DDP cells

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE