CLC number: R54; R743
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2019-04-27
Cited: 0
Clicked: 3227
Hong-yan Ding, Ya-nan Xie, Qiang Dong, Koji Kimata, Yoshihiro Nishida, Naoki Ishiguro, Li-sheng Zhuo. Roles of hyaluronan in cardiovascular and nervous system disorders[J]. Journal of Zhejiang University Science B, 2019, 20(5): 428-436.
@article{title="Roles of hyaluronan in cardiovascular and nervous system disorders",
author="Hong-yan Ding, Ya-nan Xie, Qiang Dong, Koji Kimata, Yoshihiro Nishida, Naoki Ishiguro, Li-sheng Zhuo",
journal="Journal of Zhejiang University Science B",
volume="20",
number="5",
pages="428-436",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1900155"
}
%0 Journal Article
%T Roles of hyaluronan in cardiovascular and nervous system disorders
%A Hong-yan Ding
%A Ya-nan Xie
%A Qiang Dong
%A Koji Kimata
%A Yoshihiro Nishida
%A Naoki Ishiguro
%A Li-sheng Zhuo
%J Journal of Zhejiang University SCIENCE B
%V 20
%N 5
%P 428-436
%@ 1673-1581
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1900155
TY - JOUR
T1 - Roles of hyaluronan in cardiovascular and nervous system disorders
A1 - Hong-yan Ding
A1 - Ya-nan Xie
A1 - Qiang Dong
A1 - Koji Kimata
A1 - Yoshihiro Nishida
A1 - Naoki Ishiguro
A1 - Li-sheng Zhuo
J0 - Journal of Zhejiang University Science B
VL - 20
IS - 5
SP - 428
EP - 436
%@ 1673-1581
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1900155
Abstract: Hyaluronan is a widely occurring extracellular matrix molecule, which is not only a supporting structural component, but also an active regulator of cellular functions. The chemophysical and biological properties of hyaluronan are greatly affected by its molecular size and several hyaluronan-binding proteins, making hyaluronan a fascinating molecule with great functional diversity. This review summarizes our current understanding of the roles of hyaluronan in cardiovascular and nervous system disorders, such as atherosclerosis, myocardial infarction, and stroke, with the aim to provide a foundation for future research and clinical trials.
[1]Al Qteishat A, Gaffney JJ, Krupinski J, et al., 2006. Hyaluronan expression following middle cerebral artery occlusion in the rat. Neuroreport, 17(11):1111-1114.
[2]Al'Qteishat A, Gaffney J, Krupinski J, et al., 2006. Changes in hyaluronan production and metabolism following ischaemic stroke in man. Brain, 129(8):2158-2176.
[3]Arranz AM, Perkins KL, Irie F, et al., 2014. Hyaluronan deficiency due to Has3 knock-out causes altered neuronal activity and seizures via reduction in brain extracellular space. J Neurosci, 34(18):6164-6176.
[4]Arvidsson A, Collin T, Kirik D, et al., 2002. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med, 8(9):963-970.
[5]Asher R, Bignami A, 1991. Localization of hyaluronate in primary glial cell cultures derived from newborn rat brain. Exp Cell Res, 195(2):401-411.
[6]Back SA, Tuohy TM, Chen HQ, et al., 2005. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med, 11(9):966-972.
[7]Ballios BG, Cooke MJ, Donaldson L, et al., 2015. A hyaluronan-based injectable hydrogel improves the survival and integration of stem cell progeny following transplantation. Stem Cell Reports, 4(6):1031-1045.
[8]Beldman TJ, Senders ML, Alaarg A, et al., 2017. Hyaluronan nanoparticles selectively target plaque-associated macrophages and improve plaque stability in atherosclerosis. ACS Nano, 11(6):5785-5799.
[9]Bignami A, Asher R, 1992. Some observations on the localization of hyaluronic acid in adult, newborn and embryonal rat brain. Int J Dev Neurosci, 10(1):45-57.
[10]Bourguignon LYW, Gilad E, Peyrollier K, et al., 2007. Hyaluronan-CD44 interaction stimulates Rac1 signaling and PKNγ kinase activation leading to cytoskeleton function and cell migration in astrocytes. J Neurochem, 101(4):1002-1017.
[11]Camenisch TD, Spicer AP, Brehm-Gibson T, et al., 2000. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest, 106(3):349-360.
[12]Chajara A, Raoudi M, Delpech B, et al., 2000. Increased hyaluronan and hyaluronidase production and hyaluronan degradation in injured aorta of insulin-resistant rats. Arterioscler Thromb Vasc Biol, 20(6):1480-1487.
[13]Chopra A, Lin V, McCollough A, et al., 2012. Reprogramming cardiomyocyte mechanosensing by crosstalk between integrins and hyaluronic acid receptors. J Biomech, 45(5):824-831.
[14]Chowdhury B, Xiang B, Liu M, et al., 2017. Hyaluronidase 2 deficiency causes increased mesenchymal cells, congenital heart defects, and heart failure. Circ Cardiovasc Genet, 10(1):e001598.
[15]Csoka AB, Frost GI, Stern R, 2001. The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol, 20(8):499-508.
[16]Day AJ, Sheehan JK, 2001. Hyaluronan: polysaccharide chaos to protein organisation. Curr Opin Struct Biol, 11(5):617-622.
[17]Day AJ, Prestwich GD, 2002. Hyaluronan-binding proteins: tying up the giant. J Biol Chem, 277(7):4585-4588.
[18]Ding HY, Jiang JZ, Tang YP, et al., 2013. Role of hyaluronan synthase 1 in the changes of hyaluronan content and size distribution after intracerebral hemorrhage in mice. Chin J Clin Neurosci, 21(2):138-145 (in Chinese).
[19]Doeppner TR, Hermann DM, 2015. Editorial: stem cells and progenitor cells in ischemic stroke—fashion or future? Front Cell Neurosci, 9:334.
[20]Fraser JRE, Laurent TC, Laurent UBG, 1997. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med, 242(1):27-33.
[21]GBD 2016 Causes of Death Collaborators, 2017. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the global burden of disease study 2016. Lancet, 390(10100):1151-1210.
[22]Huebener P, Abou-Khamis T, Zymek P, et al., 2008. CD44 is critically involved in infarct healing by regulating the inflammatory and fibrotic response. J Immunol, 180(4):2625-2633.
[23]Itano N, Kimata K, 2002. Mammalian hyaluronan synthases. IUBMB Life, 54(4):195-199.
[24]Jiang DH, Liang JR, Noble PW, 2011. Hyaluronan as an immune regulator in human diseases. Physiol Rev, 91(1):221-264.
[25]Jonasson L, Holm J, Skalli O, et al., 1986. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis, 6(2):131-138.
[26]Khan AI, Kerfoot SM, Heit B, et al., 2004. Role of CD44 and hyaluronan in neutrophil recruitment. J Immunol, 173(12):7594-7601.
[27]Kwok JCF, Dick G, Wang DF, et al., 2011. Extracellular matrix and perineuronal nets in CNS repair. Dev Neurobiol, 71(11):1073-1089.
[28]Laurent UBG, Laurent TC, Hellsing LK, et al., 1996. Hyaluronan in human cerebrospinal fluid. Acta Neurol Scand, 94(3):194-206.
[29]Lorentzen KA, Chai S, Chen H, et al., 2016. Mechanisms involved in extracellular matrix remodeling and arterial stiffness induced by hyaluronan accumulation. Atherosclerosis, 244:195-203.
[30]McKee CM, Penno MB, Cowman M, et al., 1996. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. J Clin Invest, 98(10):2403-2413.
[31]Moshayedi P, Nih LR, Llorente IL, et al., 2016. Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain. Biomaterials, 105:145-155.
[32]Noble PW, Lake FR, Henson PM, et al., 1993. Hyaluronate activation of CD44 induces insulin-like growth factor-1 expression by a tumor necrosis factor-α-dependent mechanism in murine macrophages. J Clin Invest, 91(6):2368-2377.
[33]Otsuka F, Kramer MCA, Woudstra P, et al., 2015. Natural progression of atherosclerosis from pathologic intimal thickening to late fibroatheroma in human coronary arteries: a pathology study. Atherosclerosis, 241(2):772-782.
[34]Rayahin JE, Buhrman JS, Zhang Y, et al., 2015. High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater Sci Eng, 1(7):481-493.
[35]Reed MJ, Vernon RB, Damodarasamy M, et al., 2017. Microvasculature of the mouse cerebral cortex exhibits increased accumulation and synthesis of hyaluronan with aging. J Gerontol A Biol Sci Med Sci, 72(6):740-746.
[36]Saari H, Konttinen YT, Friman C, et al., 1993. Differential effects of reactive oxygen species on native synovial fluid and purified human umbilical cord hyaluronate. Inflammation, 17(4):403-415.
[37]Sanchez-Rojas L, Gómez-Pinedo U, Benito-Martin MS, et al., 2018. Biohybrids of scaffolding hyaluronic acid biomaterials plus adipose stem cells home local neural stem and endothelial cells: implications for reconstruction of brain lesions after stroke. J Biomed Mater Res B Appl Biomater, in press.
[38]Savani RC, Cao GY, Pooler PM, et al., 2001. Differential involvement of the hyaluronan (HA) receptors CD44 and receptor for HA-mediated motility in endothelial cell function and angiogenesis. J Biol Chem, 276(39):36770-36778.
[39]Schmaus A, Klusmeier S, Rothley M, et al., 2014. Accumulation of small hyaluronan oligosaccharides in tumour interstitial fluid correlates with lymphatic invasion and lymph node metastasis. Br J Cancer, 111(3):559-567.
[40]Stary HC, Chandler AB, Dinsmore RE, et al., 1995. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation, 92(5):1355-1374.
[41]Stern R, Jedrzejas MJ, 2006. Hyaluronidases: their genomics, structures, and mechanisms of action. Chem Rev, 106(3):818-839.
[42]Stylli SS, Kaye AH, Novak U, 2000. Induction of CD44 expression in stab wounds of the brain: long term persistence of CD44 expression. J Clin Neurosci, 7(2):137-140.
[43]Tammi MI, Day AJ, Turley EA, 2002. Hyaluronan and homeostasis: a balancing act. J Biol Chem, 277(7):4581-4584.
[44]Tang SC, Arumugam TV, Xu XR, et al., 2007. Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci USA, 104(34):13798-13803.
[45]Tang SC, Yeh SJ, Tsai LK, et al., 2014. Association between plasma levels of hyaluronic acid and functional outcome in acute stroke patients. J Neuroinflammation, 11:101.
[46]Termeer CC, Hennies J, Voith U, et al., 2000. Oligosaccharides of hyaluronan are potent activators of dendritic cells. J Immunol, 165(4):1863-1870.
[47]Thorne RG, Nicholson C, 2006. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci USA, 103(14):5567-5572.
[48]Viola M, Karousou E, D'Angelo ML, et al., 2016. Extracellular matrix in atherosclerosis: hyaluronan and proteoglycans insights. Curr Med Chem, 23(26):2958-2971.
[49]Wakao N, Imagama S, Zhang H, et al., 2011. Hyaluronan oligosaccharides promote functional recovery after spinal cord injury in rats. Neurosci Lett, 488(3):299-304.
[50]Wang H, Zhan YT, Xu L, et al., 2001. Use of suppression subtractive hybridization for differential gene expression in stroke: discovery of CD44 gene expression and localization in permanent focal stroke in rats. Stroke, 32(4):1020-1027.
[51]Wang MJ, Kuo JS, Lee WW, et al., 2006. Translational event mediates differential production of tumor necrosis factor-α in hyaluronan-stimulated microglia and macrophages. J Neurochem, 97(3):857-871.
[52]West DC, Hampson IN, Arnold F, et al., 1985. Angiogenesis induced by degradation products of hyaluronic acid. Science, 228(4705):1324-1326.
[53]Xie LL, Kang HY, Xu QW, et al., 2013. Sleep drives metabolite clearance from the adult brain. Science, 342(6156):373-377.
[54]Xing GQ, Ren M, Verma A, 2014. Divergent temporal expression of hyaluronan metabolizing enzymes and receptors with craniotomy vs. controlled-cortical impact injury in rat brain: a pilot study. Front Neurol, 5:173.
[55]Yang CX, Liu YW, He YQ, et al., 2008. Signaling of hayluronan oligosaccharide-mediated proliferation in endthelial cells. Chin J Biochem Mol Biol, 24(3):268-275 (in Chinese).
[56]Zhuo L, Hascall VC, Kimata K, 2004. Inter-α-trypsin inhibitor, a covalent protein-glycosaminoglycan-protein complex. J Biol Chem, 279(37):38079-38082.
[57]Zimmerman E, Geiger B, Addadi L, 2002. Initial stages of cell-matrix adhesion can be mediated and modulated by cell-surface hyaluronan. Biophys J, 82(4):1848-1857.
[58]Zoltan-Jones A, Huang L, Ghatak S, et al., 2003. Elevated hyaluronan production induces mesenchymal and transformed properties in epithelial cells. J Biol Chem, 278(46):45801-45810.
Open peer comments: Debate/Discuss/Question/Opinion
<1>