CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2022-04-19
Cited: 0
Clicked: 2177
Citations: Bibtex RefMan EndNote GB/T7714
Zilan XIAO, Jianping DENG, Xiaojun ZHOU, Liyan ZHU, Xiaochan HE, Jingwu ZHENG, Deping GUO, Jingze ZHANG. Shoot rot of Zizania latifolia and the first record of its pathogen Pantoea ananatis in China[J]. Journal of Zhejiang University Science B, 2022, 23(4): 328-338.
@article{title="Shoot rot of Zizania latifolia and the first record of its pathogen Pantoea ananatis in China",
author="Zilan XIAO, Jianping DENG, Xiaojun ZHOU, Liyan ZHU, Xiaochan HE, Jingwu ZHENG, Deping GUO, Jingze ZHANG",
journal="Journal of Zhejiang University Science B",
volume="23",
number="4",
pages="328-338",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2100682"
}
%0 Journal Article
%T Shoot rot of Zizania latifolia and the first record of its pathogen Pantoea ananatis in China
%A Zilan XIAO
%A Jianping DENG
%A Xiaojun ZHOU
%A Liyan ZHU
%A Xiaochan HE
%A Jingwu ZHENG
%A Deping GUO
%A Jingze ZHANG
%J Journal of Zhejiang University SCIENCE B
%V 23
%N 4
%P 328-338
%@ 1673-1581
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2100682
TY - JOUR
T1 - Shoot rot of Zizania latifolia and the first record of its pathogen Pantoea ananatis in China
A1 - Zilan XIAO
A1 - Jianping DENG
A1 - Xiaojun ZHOU
A1 - Liyan ZHU
A1 - Xiaochan HE
A1 - Jingwu ZHENG
A1 - Deping GUO
A1 - Jingze ZHANG
J0 - Journal of Zhejiang University Science B
VL - 23
IS - 4
SP - 328
EP - 338
%@ 1673-1581
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2100682
Abstract: The aquatic grass Zizania latifolia grows symbiotically with the fungus Ustilago esculenta producing swollen structures called Jiaobai, widely cultivated in China. A new disease of Z. latifolia was found in Zhejiang Province, China. Initial lesions appeared on the leaf sheaths or sometimes on the leaves near the leaf sheaths. The lesions extended along the axis of the leaf shoots and formed long brown to dark brown streaks from the leaf sheath to the leaf, causing sheath rot and death of entire leaves on young plants. The pathogen was isolated and identified as the bacterium Pantoea ananatis, based on 16S ribosomal RNA (rRNA) gene sequencing, multilocus sequence analysis (atpD (β-subunit of ATP synthase F1), gyrB (DNA gyrase subunit B), infB (translation initiation factor 2), and rpoB (β-subunit of RNA polymerase) genes), and pathogenicity tests. Ultrastructural observations using scanning electron microscopy revealed that the bacterial cells colonized the vascular tissues in leaf sheaths, forming biofilms on the inner surface of vessel walls, and extended between vessel elements via the perforated plates. To achieve efficient detection and diagnosis of P. ananatis, species-specific primer pairs were designed and validated by testing closely related and unrelated species and diseased tissues of Z. latifolia. This is the first report of bacterial sheath rot disease of Z. latifolia caused by P. ananatis in China.
[1]AnnPJ, HuangJH, WangIT, et al., 2006. Pythiogeton zizaniae, a new species causing basal stalk rot of water bamboo in Taiwan. Mycologia, 98(1):116-120.
[2]AsselinJAE, BonaseraJM, BeerSV, 2016. PCR primers for detection of Pantoea ananatis, Burkholderia spp. and Enterobacter sp. from onion. Plant Dis, 100(4):836-846.
[3]AzadHR, HolmesGJ, CookseyDA, 2000. A new leaf blotch disease of sudangrass caused by Pantoea ananas and Pantoea stewartii. Plant Dis, 84(9):973-979.
[4]BradyC, CleenwerckI, VenterS, et al., 2008. Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst Appl Microbiol, 31(6-8):447-460.
[5]BraunEJ, 1982. Ultrastructural investigation of resistant and susceptible maize inbreds infected with Erwinia Stewartii. Phytopathology, 72(1):159-166.
[6]CarrEA, BonaseraJM, ZaidAM, et al., 2010. First report of bulb disease of onion caused by Pantoea ananatis in New York. Plant Dis, 94(7):916.
[7]CastiblancoLF, SundinGW, 2016. New insights on molecular regulation of biofilm formation in plant-associated bacteria. J Integr Plant Biol, 58(4):362-372.
[8]CotaLV, CostaRV, SilvaDD, et al., 2010. First report of pathogenicity of Pantoea ananatis in sorghum (Sorghum bicolor) in Brazil. Austral Plant Dis Notes, 5(1):120-122.
[9]CotherEJ, ReinkeR, McKenzieC, et al., 2004. An unusual stem necrosis of rice caused by Pantoea ananas and the first record of this pathogen on rice in Australia. Austral Plant Pathol, 33(4):495-503.
[10]CoutinhoTA, VenterSN, 2009. Pantoea ananatis: an unconventional plant pathogen. Mol Plant Pathol, 10(3):325-335.
[11]DarribaD, TaboadaGL, DoalloR, et al., 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods, 9(8):772.
[12]de MaayerP, ChanWY, RubagottiE, et al., 2014. Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts. BMC Genomics, 15:404.
[13]DengJP, ZhangJZ, HuMH, 2015. Occurrence regularity and control of Jiaobai rust in Dayang Town, Jinyun County. J Chang Jiang Veget, (17):51-53 (in Chinese).
[14]FigueiredoJEF, Paccola-MeirellesLD, 2012. Simple, rapid and accurate PCR-based detection of Pantoea ananatis in maize, sorghum and Digitaria sp. J Plant Pathol, 94(3):663-667.
[15]GitaitisR, WalcottR, CulpepperS, et al., 2002. Recovery of Pantoea ananatis, causal agent of center rot of onion, from weeds and crops in Georgia, USA. Crop Prot, 21(10):983-989.
[16]GitaitisRD, GayJD, 1997. First report of a leaf blight, seed stalk rot, and bulb decay of onion by Pantoea ananas in Georgia. Plant Dis, 81(9):1096.
[17]HallTA, 1999. Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser, 41:95-98.
[18]KatohK, StandleyDM, 2013. MAFFT multiple sequence alignment software Version 7: improvements in performance and usability. Mol Biol Evol, 30(4):772-780.
[19]KoutsoudisMD, TsaltasD, MinogueTD, et al., 2006. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. Proc Natl Acad Sci USA, 103(15):5983-5988.
[20]KumarS, StecherG, TamuraK, 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol, 33(7):1870-1874.
[21]LaneDJ, 1991. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (Eds.), Nucleic Acid Techniques in Bacterial Systematics. Wiley, Chichester, p.115-175.
[22]LaneDJ, PaceB, OlsenGJ, et al., 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA, 82(20):6955-6959.
[23]LiXL, OjaghianMR, ZhangJZ, et al., 2017. A new species of Scopulariopsis and its synergistic effect on pathogenicity of Verticillium dahliae on cotton plants. Microbiol Res, 201:12-20.
[24]NisikadoY, 1929. Studies on the Helminthosporium diseases of Gramineae in Japan. Ber Ohara Inst Landw Forsch, 4(1):111-126.
[25]Paccola-MeirellesLD, FerreiraAS, MeirellesWF, et al., 2001. Detection of a bacterium associated with a leaf spot disease of maize in Brazil. J Phytopathol, 149(5):275-279.
[26]Sheibani-TezerjiR, NaveedM, JehlMA, et al., 2015. The genomes of closely related Pantoea ananatis maize seed endophytes having different effects on the host plant differ in secretion system genes and mobile genetic elements. Front Microbiol, 6:440.
[27]ShoemakerRA, 2006. Nomenclature of Drechslera and Bipolaris, grass parasites segregated from ‘Helminthosporium’. Can J Plant Pathol, 28(S1):S212-S220.
[28]SilvestroD, MichalakI, 2012. raxmlGUI: a graphical front-end for RAxML. Org Divers Evol, 12(4):335-337.
[29]StallRE, AlexanderLJ, HallCB, 1969. Effect of tobacco mosaic virus and bacterial infections on occurrence of graywall of tomato. Proc Fla State Hortic Soc, 82:157-161.
[30]TalaveraG, CastresanaJ, 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol, 56(4):564-577.
[31]TurnerS, PryerKM, MiaoVPW, alet, 1999. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol, 46(4):327-338.
[32]TysonGE, StojanovicBJ, KuklinskiRF, et al., 1985. Scanning electron microscopy of Pierce’s disease bacterium in petiolar xylem of grape leaves. Phytopathology, 75(3):264-269.
[33]VaidyaG, LohmanDJ, MeierR, 2011. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27(2):171-180.
[34]WellsJM, ShengWS, CeponisMJ, et al., 1987. Isolation and characterization of strains of Erwinia ananas from honeydew melons. Phytopathology, 77(3):511-514.
[35]XiaoZL, HydeKD, ZhangJZ, 2015. Synonymy of two species of Bipolaris from aquatic crops of Poaceae. Mycotaxon, 130(1):131-143.
[36]XuXW, WaltersC, AntolinMF, et al., 2009. Phylogeny and biogeography of the eastern Asian-North American disjunct wild-rice genus (Zizania L., Poaceae). Mol Phylogenet Evol, 55(3):1008-1017.
[37]ZhangF, LiXL, ZhuSJ, et al., 2018. Biocontrol potential of Paenibacillus polymyxa against Verticillium dahliae infecting cotton plants. Biol Control, 127:70-77.
[38]ZhangJZ, ChuFQ, GuoDP, et al., 2012. Cytology and ultrastructure of interactions between Ustilago esculenta and Zizania latifolia. Mycol Prog, 11(2):499-508.
[39]ZhangJZ, ChuFQ, GuoDP, et al., 2014. The vacuoles containing multivesicular bodies: a new observation in interaction between Ustilago esculenta and Zizania latifolia. Eur J Plant Pathol, 138(1):79-91.
Open peer comments: Debate/Discuss/Question/Opinion
<1>