Full Text:   <203>

Summary:  <17>

Suppl. Mater.: 

CLC number: 

On-line Access: 2022-06-08

Received: 2021-12-13

Revision Accepted: 2022-02-04

Crosschecked: 2022-06-08

Cited: 0

Clicked: 196

Citations:  Bibtex RefMan EndNote GB/T7714




Wenzhi REN






-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2022 Vol.23 No.6 P.502-514


LncRNA-m18as1 competitively binds with miR-18a-5p to regulate follicle-stimulating hormone secretion through the Smad2/3 pathway in rat primary pituitary cells

Author(s):  Weidi ZHANG, Wenzhi REN, Dongxu HAN, Guokun ZHAO, Haoqi WANG, Haixiang GUO, Yi ZHENG, Zhonghao JI, Wei GAO, Bao YUAN

Affiliation(s):  Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; more

Corresponding email(s):   gaowei81@jlu.edu.cn, yuan_bao@jlu.edu.cn

Key Words:  Long noncoding RNA (lncRNA), MicroRNA (miRNA), Competitive endogenous RNA (ceRNA), Follicle-stimulating hormone (FSH), Mothers against decapentaplegic homolog 2/3 (Smad2/3)

Weidi ZHANG, Wenzhi REN, Dongxu HAN, Guokun ZHAO, Haoqi WANG, Haixiang GUO, Yi ZHENG, Zhonghao JI, Wei GAO, Bao YUAN. LncRNA-m18as1 competitively binds with miR-18a-5p to regulate follicle-stimulating hormone secretion through the Smad2/3 pathway in rat primary pituitary cells[J]. Journal of Zhejiang University Science B, 2022, 23(6): 502-514.

@article{title="LncRNA-m18as1 competitively binds with miR-18a-5p to regulate follicle-stimulating hormone secretion through the Smad2/3 pathway in rat primary pituitary cells",
author="Weidi ZHANG, Wenzhi REN, Dongxu HAN, Guokun ZHAO, Haoqi WANG, Haixiang GUO, Yi ZHENG, Zhonghao JI, Wei GAO, Bao YUAN",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T LncRNA-m18as1 competitively binds with miR-18a-5p to regulate follicle-stimulating hormone secretion through the Smad2/3 pathway in rat primary pituitary cells
%A Weidi ZHANG
%A Wenzhi REN
%A Dongxu HAN
%A Guokun ZHAO
%A Haoqi WANG
%A Haixiang GUO
%A Zhonghao JI
%A Wei GAO
%J Journal of Zhejiang University SCIENCE B
%V 23
%N 6
%P 502-514
%@ 1673-1581
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2101052

T1 - LncRNA-m18as1 competitively binds with miR-18a-5p to regulate follicle-stimulating hormone secretion through the Smad2/3 pathway in rat primary pituitary cells
A1 - Weidi ZHANG
A1 - Wenzhi REN
A1 - Dongxu HAN
A1 - Guokun ZHAO
A1 - Haoqi WANG
A1 - Haixiang GUO
A1 - Zhonghao JI
A1 - Wei GAO
A1 - Bao YUAN
J0 - Journal of Zhejiang University Science B
VL - 23
IS - 6
SP - 502
EP - 514
%@ 1673-1581
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2101052

Long noncoding RNAs (lncRNAs) are expressed in different species and different tissues, and perform different functions, but little is known about their involvement in the synthesis or secretion of follicle-stimulating hormone (FSH). In general, we have revealed lncRNA‍‒‍microRNA (miRNA)‍‒‍‍messenger RNA (mRNA) interactions that may play important roles in rat primary pituitary cells. In this study, a new lncRNA was identified for the first time. First, we analyzed the gene expression of lncRNA-m18as1 in different tissues and different stages by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and observed the localization of lncRNA-m18as1 with fluorescence in situ hybridization, which indicated that this lncRNA was distributed mainly in the cytoplasm. Next, we used RT-qPCR and enzyme-linked immunosorbent assay (ELISA) to analyze the regulation of FSH synthesis and secretion after overexpression or knockdown of lncRNA-m18as1 and found that lncRNA-m18as1 was positively correlated with FSH synthesis and secretion. In addition, mothers against decapentaplegic homolog 2 (Smad2) was highly expressed in our sequencing results. We also screened miR-18a-5p from our sequencing results as a miRNA that may bind to lncRNA-m18as1 and Smad2. We used RNA immunoprecipitation-qPCR (RIP-qPCR) and/or dual luciferase assays to confirm that lncRNA-m18as1 interacted with miR-18a-5p and miR-18a-5p interacted with Smad2. Fluorescence in situ hybridization (FISH) showed that lncRNA-m18as1 and miR-18a-5p were localized mainly in the cytoplasm. Finally, we determined the relationship among lncRNA-m18as1, miR-18a-5p, and the Smad2/3 pathway. Overall, we found that lncRNA-m18as1 acts as a molecular sponge of miR-18a-5p to regulate the synthesis and secretion of FSH through the Smad2/3 pathway.


方法:我们通过逆转录定量聚合酶链反应(RT-qPCR)筛选出了一个新的lncRNA,并根据功能将其最终命名为lncRNA-m18as1。经过敲降或过表达lncRNA-m18as1后,我们采用RT-qPCR与酶联免疫吸附剂测定(ELISA)分析了lncRNA-m18as1对FshβmRNA以及FSH分泌的调控作用。我们预测并确定了lncRNA-m18as1发挥作用的lncRNAm18as1/miR-18a-5p/Smad2轴。我们使用RNA结合蛋白免疫沉淀测定-逆转录定量聚合酶链反应(RIP-qPCR)和/或双荧光素酶报告分析方法分析了miR-18a-5p与lncRNA-m18as1、Smad2的靶向关系。此外,我们使用RT-qPCR和蛋白质印迹法(western blot)分析了lncRNA-m18as1和miR-18a-5p在轴中对向下游因子的调控作用,同时通过荧光原位杂交技术(FISH)观察了lncRNA-m18as1以及miR-18a-5p在细胞核与细胞质中的分布。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Acevedo-RodriguezA, KauffmanAS, CherringtonBD, et al., 2018. Emerging insights into hypothalamic-pituitary-gonadal axis regulation and interaction with stress signalling. J Neuroendocrinol, 30(10):e12590.

[2]AhmedK, LaPierreMP, GasserE, et al., 2017. Loss of microRNA-7a2 induces hypogonadotropic hypogonadism and infertility. J Clin Invest, 127(3):1061-1074.

[3]ArjunanP, GnanaprakasamJP, AnanthS, et al., 2016. Increased retinal expression of the pro-angiogenic receptor GPR91 via BMP6 in a mouse model of juvenile hemochromatosis. Invest Ophthalmol Vis Sci, 57(4):1612-1619.

[4]BernardDJ, 2004. Both SMAD2 and SMAD3 mediate activin-stimulated expression of the follicle-stimulating hormone β subunit in mouse gonadotrope cells. Mol Endocrinol, 18(3):606-623.

[5]BhaskaranM, MohanM, 2014. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet Pathol, 51(4):759-774.

[6]BridgesMC, DaulagalaAC, KourtidisA, 2021. LNCcation: lncRNA localization and function. J Cell Biol, 220(2):e202009045.

[7]CaoHL, LiuZJ, HuangPL, et al., 2019. lncRNA-RMRP promotes proliferation, migration and invasion of bladder cancer via miR-206. Eur Rev Med Pharmacol Sci, 23(3):1012-1021.

[8]CesanaM, CacchiarelliD, LegniniI, et al., 2011. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 147(2):358-369.

[9]ChanJJ, TayY, 2018. Noncoding RNA: RNA regulatory networks in cancer. Int J Mol Sci, 19(5):1310.

[10]ChenYF, LiYJ, ChouCH, et al., 2020. Control of matrix stiffness promotes endodermal lineage specification by regulating SMAD2/3 via lncRNA LINC00458. Sci Adv, 6(6):eaay0264.

[11]CiprianoA, BallarinoM, 2018. The ever-evolving concept of the gene: the use of RNA/protein experimental techniques to understand genome functions. Front Mol Biosci, 5:20.

[12]CossD, JacobsSBR, BenderCE, et al., 2004. A novel AP-1 site is critical for maximal induction of the follicle-stimulating hormone β gene by gonadotropin-releasing hormone. J Biol Chem, 279(1):152-162.

[13]DewaillyD, RobinG, PeigneM, et al., 2016. Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update, 22(6):709-724.

[14]FaghihiMA, ModarresiF, KhalilAM, et al., 2008. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of β‍-secretase. Nat Med, 14(7):723-730.

[15]FujiiY, OkadaY, MooreJP, et al., 2002. Evidence that PACAP and GnRH down-regulate follicle-stimulating hormone-‍βmRNA levels by stimulating follistatin gene expression: effects on folliculostellate cells, gonadotrophs and LβT2 gonadotroph cells. Mol Cell Endocrinol, 192(1-2):55-64.

[16]GaoYL, ZhaoZS, ZhangMY, et al., 2017. Long noncoding RNA PVT1 facilitates cervical cancer progression via negative regulating of miR-424. Oncol Res Featur Preclin Clin Cancer Ther, 25(8):1391-1398.

[17]GarrelG, SimonV, ThieulantML, et al., 2010. Sustained gonadotropin-releasing hormone stimulation mobilizes the cAMP/PKA pathway to induce nitric oxide synthase type 1 expression in rat pituitary cells in vitro and in vivo at proestrus. Biol Reprod, 82(6):1170-1179.

[18]GeorgeJW, DilleEA, HeckertLL, 2011. Current concepts of follicle-stimulating hormone receptor gene regulation. Biol Reprod, 84(1):7-17.

[19]GiraldezAJ, MishimaY, RihelJ, et al., 2006. Zebrafish miR-430 promotes deadenylation and clearance of maternal mRNAs. Science, 312(5770):75-79.

[20]HanDX, SunXL, FuY, et al., 2017a. Identification of long non-coding RNAs in the immature and mature rat anterior pituitary. Sci Rep, 7:17780.

[21]HanDX, SunXL, XuMQ, et al., 2017b. Roles of differential expression of microRNA-21-3p and microRNA-433 in FSH regulation in rat anterior pituitary cells. Oncotarget, 8(22):36553-36565.

[22]HeckertL, GriswoldMD, 1993. Expression of the FSH receptor in the testis. In: Bardin CW (Ed.), Recent Progress in Hormone Research. Academic Press, Manhattan, p.61-77.

[23]HuGZ, LouZK, GuptaM, 2014. The long non-coding RNA GAS5 cooperates with the eukaryotic translation initiation factor 4E to regulate c-Myc translation. PLoS ONE, 9(9):e107016.

[24]JiangW, LiuYT, LiuR, et al., 2015. The lncRNA DEANR1 facilitates human endoderm differentiation by activating FOXA2 expression. Cell Rep, 11(1):137-148.

[25]KanasakiH, PurwanaIN, MijiddorjT, et al., 2012. Effects of estradiol and progesterone on gonadotropin LHβ‍- and FSHβ‍-subunit promoter activities in gonadotroph LβT2 cells. Neuro Endocrinol Lett, 33(6):608-613.

[26]KapraraA, HuhtaniemiIT, 2018. The hypothalamus-pituitary-gonad axis: tales of mice and men. Metabolism, 86:3-17.

[27]KrolJ, LoedigeI, FilipowiczW, 2010. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet, 11(9):597-610.

[28]KumarTR, 2018. Extragonadal actions of FSH: a critical need for novel genetic models. Endocrinology, 159(1):2-8.

[29]LambaP, FortinJ, TranS, et al., 2009. A novel role for the forkhead transcription factor FOXL2 in activin A-regulated follicle-stimulating hormone β subunit transcription. Mol Endocrinol, 23(7):1001-1013.

[30]LannesJ, L'hôteD, Fernandez-VegaA, et al., 2016. A regulatory loop between miR-132 and miR-125b involved in gonadotrope cells desensitization to GnRH. Sci Rep, 6:34676.

[31]LeiKC, LiangX, GaoYW, et al., 2017. Lnc-ATB contributes to gastric cancer growth through a miR-141-3p/TGFβ2 feedback loop. Biochem Biophys Res Commun, 484(3):514-521.

[32]LiM, DuanLW, LiYX, et al., 2019. Long noncoding RNA/circular noncoding RNA-miRNA-mRNA axes in cardiovascular diseases. Life Sci, 233:116440.

[33]LiuXM, HuangSS, GuanY, et al., 2020. Long noncoding RNA OSER1-AS1 promotes the malignant properties of non-small cell lung cancer by sponging microRNA-433-3p and thereby increasing Smad2 expression. Oncol Rep, 44(2):599-610.

[34]LongH, WangX, ChenYJ, et al., 2018. Dysregulation of microRNAs in autoimmune diseases: pathogenesis, biomarkers and potential therapeutic targets. Cancer Lett, 428:90-103.

[35]MaLN, BajicVB, ZhangZ, 2013. On the classification of long non-coding RNAs. RNA Biol, 10(6):925-933.

[36]MarshallJC, KelchRP, 1986. Gonadotropin-releasing hormone: role of pulsatile secretion in the regulation of reproduction. N Engl J Med, 315(23):1459-1468.

[37]MassagueJ, SeoaneJ, WottonD, 2005. Smad transcription factors. Genes Dev, 19(23):2783-2810.

[38]MottaJCL, MadureiraG, SilvaLO, et al., 2020. Interactions of circulating estradiol and progesterone on changes in endometrial area and pituitary responsiveness to GnRH. Biol Reprod, 103(3):643-653.

[39]NohJH, KimKM, McCluskyWG, et al., 2018. Cytoplasmic functions of long noncoding RNAs. WIREs RNA, 9(3):e1471.

[40]PengWZ, SiS, ZhangQX, et al., 2015. Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate gastric cancer progression. J Exp Clin Cancer Res, 34:79.

[41]PierceJG, ParsonsTF, 1981. Glycoprotein hormones: structure and function. Annu Rev Biochem, 50:465-495.

[42]PopovicsP, RekasiZ, StewartAJ, et al., 2011. Regulation of pituitary inhibin/activin subunits and follistatin gene expression by GnRH in female rats. J Endocrinol, 210(1):71-79.

[43]RansohoffJD, WeiYN, KhavariPA, 2018. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol, 19(3):143-157.

[44]SalmenaL, PolisenoL, TayY, et al., 2011. A ceRNA hypothesis: the rosetta stone of a hidden RNA language? Cell, 146(3):353-358.

[45]SantiD, CrepieuxP, ReiterE, et al., 2020. Follicle-stimulating hormone (FSH) action on spermatogenesis: a focus on physiological and therapeutic roles. J Clin Med, 9(4):1014.

[46]SchubertM, Pérez LanuzaL, GromollJ, 2019. Pharmacogenetics of FSH action in the male. Front Endocrinol, 10:47.

[47]StamatiadesGA, CarrollRS, KaiserUB, 2019. GnRH—a key regulator of FSH. Endocrinology, 160(1):57-67.

[48]StilleyJAW, SegaloffDL, 2018. FSH actions and pregnancy: looking beyond ovarian FSH receptors. Endocrinology, 159(12):4033-4042.

[49]SunY, LiuWZ, LiuT, et al., 2015. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Sig Transd, 35(6):600-604.

[50]TsutsumiR, MistryD, WebsterNJG, 2010. Signaling responses to pulsatile gonadotropin-releasing hormone in LβT2 gonadotrope cells. J Biol Chem, 285(26):‍20262-20272.

[51]WangLM, SongFB, ZhuWB, et al., 2021. The stage-specific long non-coding RNAs and mRNAs identification and analysis during early development of common carp, Cyprinus carpio. Genomics, 113(1):20-28.

[52]WangLY, ChoKB, LiY, et al., 2019. Long noncoding RNA (lncRNA)‍‍-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int J Mol Sci, 20(22):5758.

[53]XuJ, WuKJ, JiaQJ, et al., 2020. Roles of miRNA and lncRNA in triple-negative breast cancer. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(9):673-689.

[54]YuH, LiSB, 2020. Role of LINC00152 in non-small cell lung cancer. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(3):179-191.

[55]ZhaoFL, WuY, YangW, et al., 2020. Inhibition of vascular calcification by microRNA-155-5p is accompanied by the inactivation of TGF-β1/Smad2/3 signaling pathway. Acta Histochem, 122:151551.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE