Full Text:   <422>

Summary:  <189>

Suppl. Mater.: 

CLC number: 

On-line Access: 2023-11-14

Received: 2022-12-28

Revision Accepted: 2023-05-17

Crosschecked: 2023-11-15

Cited: 0

Clicked: 555

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Fang LIU

https://orcid.org/0000-0002-7540-0370

Yuncheng LV

https://orcid.org/0000-0003-3575-194X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2023 Vol.24 No.11 P.998-1013

http://doi.org/10.1631/jzus.B2200682


Sortilin-induced lipid accumulation and atherogenesis are suppressed by HNF1b SUMOylation promoted by flavone of Polygonatum odoratum


Author(s):  Fang LIU, Shirui CHEN, Xinyue MING, Huijuan LI, Zhaoming ZENG, Yuncheng LV

Affiliation(s):  Guangxi Key Laboratory of Diabetic Systems Medicine & Institute of Basic Medical Sciences, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541199, China; more

Corresponding email(s):   anthony0723@163.com, zzhg88@163.com

Key Words:  Atherosclerosis, Lipid accumulation, Hepatocyte nuclear factor 1β, (HNF1b), Flavone of Polygonatum odoratum, SUMOylation


Fang LIU, Shirui CHEN, Xinyue MING, Huijuan LI, Zhaoming ZENG, Yuncheng LV. Sortilin-induced lipid accumulation and atherogenesis are suppressed by HNF1b SUMOylation promoted by flavone of Polygonatum odoratum[J]. Journal of Zhejiang University Science B, 2023, 24(11): 998-1013.

@article{title="Sortilin-induced lipid accumulation and atherogenesis are suppressed by HNF1b SUMOylation promoted by flavone of Polygonatum odoratum",
author="Fang LIU, Shirui CHEN, Xinyue MING, Huijuan LI, Zhaoming ZENG, Yuncheng LV",
journal="Journal of Zhejiang University Science B",
volume="24",
number="11",
pages="998-1013",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2200682"
}

%0 Journal Article
%T Sortilin-induced lipid accumulation and atherogenesis are suppressed by HNF1b SUMOylation promoted by flavone of Polygonatum odoratum
%A Fang LIU
%A Shirui CHEN
%A Xinyue MING
%A Huijuan LI
%A Zhaoming ZENG
%A Yuncheng LV
%J Journal of Zhejiang University SCIENCE B
%V 24
%N 11
%P 998-1013
%@ 1673-1581
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2200682

TY - JOUR
T1 - Sortilin-induced lipid accumulation and atherogenesis are suppressed by HNF1b SUMOylation promoted by flavone of Polygonatum odoratum
A1 - Fang LIU
A1 - Shirui CHEN
A1 - Xinyue MING
A1 - Huijuan LI
A1 - Zhaoming ZENG
A1 - Yuncheng LV
J0 - Journal of Zhejiang University Science B
VL - 24
IS - 11
SP - 998
EP - 1013
%@ 1673-1581
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2200682


Abstract: 
This study aims to investigate the impact of hepatocyte nuclear factor 1β; (HNF1b) on macrophage sortilin-mediated lipid metabolism and aortic atherosclerosis and explore the role of the flavone of Polygonatum odoratum (PAOA-flavone)-promoted small ubiquitin-related modifier (SUMO) modification in the atheroprotective efficacy of HNF1b. HNF1b was predicted to be a transcriptional regulator of sortilin expression via bioinformatics, dual-luciferase reporter gene assay, and chromatin immunoprecipitation. HNF1b overexpression decreased sortilin expression and cellular lipid contents in THP-1 macrophages, leading to a depression in atherosclerotic plaque formation in low-density lipoprotein (LDL) receptor-deficient (LDLR-/-) mice. Multiple SUMO1-modified sites were identified on the HNF1b protein and co-immunoprecipitation confirmed its SUMO1 modification. The SUMOylation of HNF1b protein enhanced the HNF1b-inhibited effect on sortilin expression and reduced lipid contents in macrophages. PAOA-flavone treatment promoted SUMO-activating enzyme subunit 1 (SAE1) expression and SAE1-catalyzed SUMOylation of the HNF1b protein, which prevented sortilin-mediated lipid accumulation in macrophages and the formation of atherosclerotic plaques in apolipoprotein E-deficient (ApoE-/-) mice. Interference with SAE1 abrogated the improvement in lipid metabolism in macrophage cells and atheroprotective efficacy in vivo upon PAOA-flavone administration. In summary, HNF1b transcriptionally suppressed sortilin expression and macrophage lipid accumulation to inhibit aortic lipid deposition and the development of atherosclerosis. This anti-atherosclerotic effect was enhanced by PAOA-flavone-facilitated, SAE1-catalyzed SUMOylation of the HNF1b protein.

玉竹黄酮通过促进HNF1b蛋白的SUMO化修饰抑制分拣蛋白(sortilin)介导的脂质积累及动脉粥样硬化

刘芳1,陈诗芮1,明新月1,李慧娟1,曾昭明2,吕运成1
1广西糖尿病系统医学重点实验室&桂林医学院基础医学院基础医学研究所,中国桂林市,541199
2湖南明舜制药有限公司,中国邵东市,422800
摘要:本研究旨在探究肝细胞核因子1β(HNF1b)对巨噬细胞分拣蛋白(sortilin)介导的脂质代谢和主动脉粥样硬化的影响,以及玉竹(Polygonatum odoratum)黄酮在促进HNF1b的小泛素蛋白(SUMO)化修饰在动脉粥样硬化保护功效中的作用。通过生物信息学、双荧光素酶报告基因分析和染色质免疫共沉淀试验预测了HNF1b是sortilin表达的转录调控因子。HNF1b过表达降低了人髓系白血病单核(THP-1)巨噬细胞中sortilin的表达和细胞内脂质含量,从而抑制了低密度脂蛋白受体基因敲除(LDLR-/-)小鼠的动脉粥样斑块形成。在HNF1b蛋白上鉴定出多个SUMO1修饰位点,并通过免疫共沉淀证实存在SUMO1修饰。HNF1b蛋白的SUMO化修饰增强了HNF1b对sortilin表达的抑制作用,并降低了巨噬细胞中的脂质含量。玉竹黄酮处理促进了SUMO活化酶E1(SAE1)的表达和SAE1催化下对HNF1b蛋白的SUMO化修饰,从而阻止了巨噬细胞中sortilin介导的脂质积累和载脂蛋白E基因敲除(ApoE-/-)小鼠的动脉粥样斑块形成,而对SAE1的干扰使得巨噬细胞内脂质代谢的改善和玉竹黄酮治疗对体内抗动脉粥样硬化效果消失。因此,HNF1b通过转录抑制sortilin表达和巨噬细胞内脂质积累,抑制主动脉脂质沉积和动脉粥样硬化的发展,玉竹黄酮促进SAE1催化的HNF1b蛋白SUMO化修饰增强了其抗动脉粥样硬化效应。

关键词:动脉粥样硬化;脂质蓄积;HNF1b;玉竹黄酮;SUMO化修饰

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]BarishGD, YuRT, KarunasiriMS, et al., 2012. The Bcl6-SMRT/NCoR cistrome represses inflammation to attenuate atherosclerosis. Cell Metab, 15(4):554-562.

[2]BjörkegrenJLM, LusisAJ, 2022. Atherosclerosis: recent developments. Cell, 185(10):1630-1645.

[3]BoggioR, ColomboR, HayRT, et al., 2004. A mechanism for inhibiting the SUMO pathway. Mol Cell, 16(4):‍549-561.

[4]CahillLE, SacksFM, RimmEB, et al., 2019. Cholesterol efflux capacity, HDL cholesterol, and risk of coronary heart disease: a nested case-control study in men. J Lipid Res, 60(8):1457-1464.

[5]ChanSC, ZhangY, ShaoAN, et al., 2018. Mechanism of fibrosis in HNF1B-related autosomal dominant tubulointerstitial kidney disease. J Am Soc Nephrol, 29(10):‍2493-2509.

[6]ChanetA, MilenkovicD, DevalC, et al., 2012. Naringin, the major grapefruit flavonoid, specifically affects atherosclerosis development in diet-induced hypercholesterolemia in mice. J Nutr Biochem, 23(5):469-477.

[7]da SilvaRR, de OliveiraTT, NagemTJ, et al., 2001. Hypocholesterolemic effect of naringin and rutin flavonoids. Arch Latinoam Nutr, 51(3):258-264 (in Portuguese).

[8]di PietroP, CarrizzoA, SommellaE, et al., 2022. Targeting the ASMase/S1P pathway protects from sortilin-evoked vascular damage in hypertension. J Clin Invest, 132(3):e146343.

[9]GillG, 2004. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev, 18(17):‍2046-2059.

[10]GoettschC, KjolbyM, AikawaE, 2018. Sortilin and its multiple roles in cardiovascular and metabolic diseases. Arterioscler Thromb Vasc Biol, 38(1):19-25.

[11]HiranoY, MurataS, TanakaK, et al., 2003. Sterol regulatory element-binding proteins are negatively regulated through SUMO-1 modification independent of the ubiquitin/26 S proteasome pathway. J Biol Chem, 278(19):16809-16819.

[12]HishikawaK, NakakiT, FujitaT, 2005. Oral flavonoid supplementation attenuates atherosclerosis development in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol, 25(2):442-446.

[13]HuM, HuangX, HanX, et al., 2020. Loss of HNF1α function contributes to hepatocyte proliferation and abnormal cholesterol metabolism via downregulating miR-122: a novel mechanism of MODY3. Diabetes Metab Syndr Obes, 13:627-639.

[14]JiL, ChenSL, GuGC, et al., 2021. Discovery of potential biomarkers for human atherosclerotic abdominal aortic aneurysm through untargeted metabolomics and transcriptomics. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(9):733-745.

[15]JohnsonES, 2004. Protein modification by SUMO. Annu Rev Biochem, 73:355-382.

[16]JohnstoneKA, DiakogiannakiE, DhayalS, et al., 2011. Dysregulation of Hnf1b gene expression in cultured beta-cells in response to cytotoxic fatty acid. JOP, 12(1):6-10.

[17]KatoH, TateishiK, FujiwaraH, et al., 2022. MNX1-HNF1B axis is indispensable for intraductal papillary mucinous neoplasm lineages. Gastroenterology, 162(4):‍1272-1287. e16.

[18]KornfeldJW, BaitzelC, KönnerAC, et al., 2013. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature, 494(7435):111-115.

[19]KumarS, PandeyAK, 2013. Chemistry and biological activities of flavonoids: an overview. Sci World J, 2013:162750.

[20]LiH, LiJQ, QuZT, et al., 2020. Intrauterine exposure to low-dose DBP in the mice induces obesity in offspring via suppression of UCP1 mediated ER stress. Sci Rep, 10:16360.

[21]LiXX, LiuSH, ZhuangSJ, et al., 2020. Effects of oxiracetam combined with ginkgo biloba extract in the treatment of acute intracerebral hemorrhage: a clinical study. Brain Behav, 10(8):e01661.

[22]LinHP, SinglaB, AhnW, et al., 2022. Receptor-independent fluid-phase macropinocytosis promotes arterial foam cell formation and atherosclerosis. Sci Transl Med, 14(663):eadd2376.

[23]LiuF, ZhuX, JiangXP, et al., 2022. Transcriptional control by HNF-1: emerging evidence showing its role in lipid metabolism and lipid metabolism disorders. Genes Dis, 9(5):1248-1257.

[24]LiuWH, ZengM, FuN, 2021. Functions of nuclear receptors SUMOylation. Clin Chim Acta, 516:27-33.

[25]LongZ, CaoM, SuSH, et al., 2017. Inhibition of hepatocyte nuclear factor 1b induces hepatic steatosis through DPP4/NOX1-mediated regulation of superoxide. Free Radic Biol Med, 113:71-83.

[26]LuW, SunJ, ZhouHH, et al., 2020. HNF1B inhibits cell proliferation via repression of SMAD6 expression in prostate cancer. J Cell Mol Med, 24(24):14539-14548.

[27]LvYC, YangJ, GaoAB, et al., 2019. Sortilin promotes macrophage cholesterol accumulation and aortic atherosclerosis through lysosomal degradation of ATP-binding cassette transporter A1 protein. Acta Biochim Biophys Sin (Shanghai), 51(5):471-483.

[28]LvYC, GaoAB, YangJ, et al., 2020. Long-term adenosine A1 receptor activation-induced sortilin expression promotes α-synuclein upregulation in dopaminergic neurons. Neural Regen Res, 15(4):712-723.

[29]MatsuuraH, 2001. Saponins in garlic as modifiers of the risk of cardiovascular disease. J Nutr, 131(3):1000S-1005S.

[30]MelchiorF, 2000. SUMO—nonclassical ubiquitin. Annu Rev Cell Dev Biol, 16:591-626.

[31]MendelDB, HansenLP, GravesMK, et al., 1991. HNF-1 alpha and HNF-1 beta (vHNF-1) share dimerization and homeo domains, but not activation domains, and form heterodimers in vitro. Genes Dev, 5(6):1042-1056.

[32]MengN, ChenK, WangYH, et al., 2022. Dihydrohomoplantagin and homoplantaginin, major flavonoid glycosides from Salvia plebeia R. Br. inhibit oxLDL-induced endothelial cell injury and restrict atherosclerosis via activating Nrf2 anti-oxidation signal pathway. Molecules, 27(6):1990.

[33]MinkPJ, ScraffordCG, BarrajLM, et al., 2007. Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr, 85(3):895-909.

[34]MirandaKJ, LoeserRF, YammaniRR, 2010. Sumoylation and nuclear translocation of S100A4 regulate IL-1β-mediated production of matrix metalloproteinase-13. J Biol Chem, 285(41):31517-31524.

[35]MulvihillEE, AssiniJM, SutherlandBG, et al., 2010. Naringenin decreases progression of atherosclerosis by improving dyslipidemia in high-fat-fed low-density lipoprotein receptor-null mice. Arterioscler Thromb Vasc Biol, 30(4):742-748.

[36]PatelKM, StrongA, TohyamaJ, et al., 2015. Macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis. Circ Res, 116(5):789-796.

[37]PatitucciC, CouchyG, BagattinA, et al., 2017. Hepatocyte nuclear factor 1α suppresses steatosis-associated liver cancer by inhibiting PPARγ transcription. J Clin Invest, 127(5):1873-1888.

[38]PawellekA, RyderU, TammsaluT, et al., 2017. Characterisation of the biflavonoid hinokiflavone as a pre-mRNA splicing modulator that inhibits SENP. eLife, 6:e27402.

[39]RodriguesHG, DinizYS, FaineLA, et al., 2005. Antioxidant effect of saponin: potential action of a soybean flavonoid on glucose tolerance and risk factors for atherosclerosis. Int J Food Sci Nutr, 56(2):79-85.

[40]Salas-LloretD, González-PrietoR, 2022. Insights in post-translational modifications: ubiquitin and SUMO. Int J Mol Sci, 23(6):3281.

[41]SteinS, OosterveerMH, MatakiC, et al., 2014. SUMOylation-dependent LRH-1/PROX1 interaction promotes atherosclerosis by decreasing hepatic reverse cholesterol transport. Cell Metab, 20(4):603-613.

[42]SuSH, WuGY, ChengXD, et al., 2018. Oleanolic acid attenuates PCBs-induced adiposity and insulin resistance via HNF1b-mediated regulation of redox and PPARγ signaling. Free Radic Biol Med, 124:122-134.

[43]SunS, YangJ, XieW, et al., 2020. Complicated trafficking behaviors involved in paradoxical regulation of sortilin in lipid metabolism. J Cell Physiol, 235(4):3258-3269.

[44]SusserLI, RaynerKJ, 2022. Through the layers: how macrophages drive atherosclerosis across the vessel wall. J Clin Invest, 132(9):e157011.

[45]ToniattiC, MonaciP, NicosiaA, et al., 1993. A bipartite activation domain is responsible for the activity of transcription factor HNF1/LFB1 in cells of hepatic and nonhepatic origin. DNA Cell Biol, 12(3):199-208.

[46]VertegaalACO, 2022. Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Biol, 23(11):‍715-731.

[47]WangJQ, HeCX, GaoP, et al., 2020. HNF1B-mediated repression of SLUG is suppressed by EZH2 in aggressive prostate cancer. Oncogene, 39(6):1335-1346.

[48]WangW, ZhaoMH, ZhaoY, et al., 2020. PDGFRα/β‍-PI3K-Akt pathway response to the interplay of mitochondrial dysfunction and DNA damage in Aroclor 1254-exposed porcine granulosa cells. Environ Pollut, 263(Part A):114534.

[49]WangX, WuH, YuWH, et al., 2017. Hepatocyte nuclear factor 1b is a novel negative regulator of white adipocyte differentiation. Cell Death Differ, 24(9):1588-1597.

[50]WatanabeT, OzawaA, MasudaS, et al., 2020. Transcriptional regulation of the Angptl8 gene by hepatocyte nuclear factor-1 in the murine liver. Sci Rep, 10:9999.

[51]WuH, YuWH, MengFS, et al., 2017. Polychlorinated biphenyls-153 induces metabolic dysfunction through activation of ROS/NF-‍κB signaling via downregulation of HNF1b. Redox Biol, 12:300-310.

[52]XueF, ZhaoZL, GuYP, et al., 2021. 7,‍8-Dihydroxyflavone modulates bone formation and resorption and ameliorates ovariectomy-induced osteoporosis. eLife, 10:e64872.

[53]YangSB, ZhaoT, WuLX, et al., 2020. Effects of dietary carbohydrate sources on lipid metabolism and SUMOylation modification in the liver tissues of yellow catfish. Br J Nutr, 124(12):1241-1250.

[54]YuCX, WenQ, RenQD, et al., 2021. Polychlorinated biphenyl congener 180 (PCB 180) regulates mitotic clonal expansion and enhances adipogenesis through modulation of C/EBPβ SUMOylation in preadipocytes. Food Chem Toxicol, 152:112205.

[55]YuK, WangY, ZhengYQ, et al., 2023. qPTM: an updated database for PTM dynamics in human, mouse, rat and yeast. Nucleic Acids Res, 51(D1):D479-D487.

[56]ZhongLY, CayabyabFS, TangCK, et al., 2016. Sortilin: a novel regulator in lipid metabolism and atherogenesis. Clin Chim Acta, 460:11-17.

[57]ZhuoXZ, TianYL, WeiYD, et al., 2019. Flavone of hippophae (H-flavone) lowers atherosclerotic risk factors via upregulation of the adipokine C1q/tumor necrosis factor-related protein 6 (CTRP6) in macrophages. Biosci Biotechnol Biochem, 83(11):2000-2007.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE