Full Text:   <398>

Summary:  <48>

Suppl. Mater.: 

CLC number: 

On-line Access: 2024-06-20

Received: 2023-10-22

Revision Accepted: 2023-12-26

Crosschecked: 2024-09-23

Cited: 0

Clicked: 615

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Pei LIU

https://orcid.org/0000-0003-1440-8851

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2024 Vol.25 No.9 P.789-795

http://doi.org/10.1631/jzus.B2300738


Unveiling the innovative green synthesis mechanism of selenium nanoparticles by exploiting intracellular protein elongation factor Tu from Bacillus paramycoides


Author(s):  Pei LIU, Haiyu LONG, Shuai HE, Han CHENG, Erdong LI, Siyu CHENG, Mengdi LIANG, Zhengwei LIU, Zhen GUO, Hao SHI

Affiliation(s):  Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China; more

Corresponding email(s):   liupeiouc@126.com

Key Words:  Selenium nanoparticles (SeNPs), Bacillus paramycoides, Elongation Factor Tu (EF-Tu), Selenite reduction, Green synthesis mechanism


Pei LIU, Haiyu LONG, Shuai HE, Han CHENG, Erdong LI, Siyu CHENG, Mengdi LIANG, Zhengwei LIU, Zhen GUO, Hao SHI. Unveiling the innovative green synthesis mechanism of selenium nanoparticles by exploiting intracellular protein elongation factor Tu from Bacillus paramycoides[J]. Journal of Zhejiang University Science B, 2024, 25(9): 789-795.

@article{title="Unveiling the innovative green synthesis mechanism of selenium nanoparticles by exploiting intracellular protein elongation factor Tu from Bacillus paramycoides",
author="Pei LIU, Haiyu LONG, Shuai HE, Han CHENG, Erdong LI, Siyu CHENG, Mengdi LIANG, Zhengwei LIU, Zhen GUO, Hao SHI",
journal="Journal of Zhejiang University Science B",
volume="25",
number="9",
pages="789-795",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2300738"
}

%0 Journal Article
%T Unveiling the innovative green synthesis mechanism of selenium nanoparticles by exploiting intracellular protein elongation factor Tu from Bacillus paramycoides
%A Pei LIU
%A Haiyu LONG
%A Shuai HE
%A Han CHENG
%A Erdong LI
%A Siyu CHENG
%A Mengdi LIANG
%A Zhengwei LIU
%A Zhen GUO
%A Hao SHI
%J Journal of Zhejiang University SCIENCE B
%V 25
%N 9
%P 789-795
%@ 1673-1581
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2300738

TY - JOUR
T1 - Unveiling the innovative green synthesis mechanism of selenium nanoparticles by exploiting intracellular protein elongation factor Tu from Bacillus paramycoides
A1 - Pei LIU
A1 - Haiyu LONG
A1 - Shuai HE
A1 - Han CHENG
A1 - Erdong LI
A1 - Siyu CHENG
A1 - Mengdi LIANG
A1 - Zhengwei LIU
A1 - Zhen GUO
A1 - Hao SHI
J0 - Journal of Zhejiang University Science B
VL - 25
IS - 9
SP - 789
EP - 795
%@ 1673-1581
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2300738


Abstract: 
selenium nanoparticles (SeNPs) have garnered extensive research interest and shown promising applications across diverse fields owing to their distinctive properties, including antioxidant, anticancer, and antibacterial activity (Ojeda et al., 2020; Qu et al., 2023; Zambonino et al., 2021, 2023). Among the various approaches employed for SeNP synthesis, green synthesis has emerged as a noteworthy and eco-friendly methodology. Keshtmand et al. (2023) underscored the significance of green-synthesized SeNPs, presenting a compelling avenue in this domain. This innovative strategy harnesses the potential of natural resources, such as plant extracts or microorganisms, to facilitate the production of SeNPs.

利用Bacillus paramycoides细胞内蛋白延伸因子Tu揭示硒纳米颗粒的创新绿色合成机制

刘培1,2, 龙海钰1,2, 贺帅1,2, 程翰1,2, 李迩东1, 成思宇1, 梁梦娣1,2, 刘正伟1,2, 郭振1, 时号1
1淮阴工学院生命科学与食品工程学院, 中国淮安市, 223003
2淮阴工学院江苏省益生菌制剂重点建设实验室, 中国淮安市, 223003
摘要:纳米硒(SeNPs)因具有独特特性而备受关注,在各领域均有较好的应用前景。因此,开发高效、环保的SeNPs合成方法具有重要意义。本实验室保存的Bacillus paramycoides 24522在24 h内可将亚硒酸盐还原为具有高稳定性和高分散性的SeNPs,其平均直径为150 nm(100~200 nm),zeta电位为?29.9 eV。本研究提出了一种绿色新颖的还原机制,即利用B. paramycoides 24522中细胞质蛋白延伸因子Tu(EF-Tu)还原合成SeNPs,并经十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)和液相色谱串联质谱(LC-MS/MS)分析,鉴定EF-Tu分子质量约为43 kDa,含395个氨基酸。实时荧光定量聚合酶链反应(qPCR)结果显示EF-Tu的信使RNA(mRNA)表达量增加8.9倍,这进一步证实了EF-Tu参与了亚硒酸盐的还原。透射电镜(TEM)成像结果显示,SeNPs的合成发生在细胞内。综上可知,小SeNPs最初在细胞内作为种子与EF-Tu相互作用,随后经历成熟过程,并最终通过细胞裂解释放到培养基中。这种创新的绿色合成机制为SeNPs的生产提供了宽广的前景,有助于推进环境友好型纳米材料的合成。

关键词:纳米硒(SeNPs);副覃状芽孢杆菌(Bacillus paramycoides);延伸因子Tu;硒还原;绿色合成机制

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AraiK, ClarkBF, DuffyL, et al., 1980. Primary structure of elongation factor Tu from Escherichia coli. Proc Natl Acad Sci USA, 77(3):1326-1330.

[2]DebieuxCM, DridgeEJ, MuellerCM, et al., 2011. A bacterial process for selenium nanosphere assembly. Proc Natl Acad Sci USA, 108(33):13480-13485.

[3]Defeu SoufoHJ, ReimoldC, BreddermannH, et al., 2015. Translation elongation factor EF-Tu modulates filament formation of actin-like MreB protein in vitro. J Mol Biol, 427(8):1715-1727.

[4]DhanjalS, CameotraS, 2010. Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Fact, 9:52.

[5]DobiasJ, SuvorovaEI, Bernier-LatmaniR, 2011. Role of proteins in controlling selenium nanoparticle size. Nanotechnology, 22(19):195605.

[6]Gonzalez-GilG, LensPNL, SaikalyPE, 2016. Selenite reduction by anaerobic microbial aggregates: microbial community structure, and proteins associated to the produced selenium spheres. Front Microbiol, 7:571.

[7]JiaHL, HuangSW, ChengS, et al., 2022. Novel mechanisms of selenite reduction in Bacillus subtilis 168: confirmation of multiple-pathway mediated remediation based on transcriptome analysis. J Hazard Mater, 433:128834.

[8]JohansenJS, KavaliauskasD, PfeilSH, et al., 2018. E. coli elongation factor Tu bound to a GTP analogue displays an open conformation equivalent to the GDP-bound form. Nucleic Acids Res, 46(16):8641-8650.

[9]KeshtmandZ, KhademianE, Poorjafari JafroodiP, et al., 2023. Green synthesis of selenium nanoparticles using Artemisia chamaemelifolia: toxicity effects through regulation of gene expression for cancer cells and bacteria. Nano-Struct Nano-Objects, 36:101049.

[10]KieliszekM, BierlaK, Jiménez-LamanaJ, et al., 2020. Metabolic response of the yeast Candida utilis during enrichment in selenium. Int J Mol Sci, 21(15):5287.

[11]KulpA, KuehnMJ, 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol, 64:163-184.

[12]KumarCMV, KarthickV, InbakandanD, et al., 2022. Effect of selenium nanoparticles induced toxicity on the marine diatom Chaetoceros gracilis. Process Saf Environ Prot, 163:200-209.

[13]LampisS, ZonaroE, BertoliniC, et al., 2014. Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Microb Cell Fact, 13:35.

[14]LiK, XuQL, GaoSS, et al., 2021. Highly stable selenium nanoparticles: assembly and stabilization via flagellin FliC and porin OmpF in Rahnella aquatilis HX2. J Hazard Mater, 414:125545.

[15]LiuP, LongHY, ChengH, et al., 2023. Highly-efficient synthesis of biogenic selenium nanoparticles by Bacillus paramycoides and their antibacterial and antioxidant activities. Front Bioeng Biotechnol, 11:1227619.

[16]MaJC, KobayashiDY, YeeN, 2009. Role of menaquinone biosynthesis genes in selenate reduction by Enterobacter cloacae SLD1a-1 and Escherichia coli K12. Environ Microbiol, 11(1):149-158.

[17]NancharaiahYV, LensPNL, 2015a. Ecology and biotechnology of selenium-respiring bacteria. Microbiol Mol Biol Rev, 79(1):61-80.

[18]NancharaiahYV, LensPNL, 2015b. Selenium biomineralization for biotechnological applications. Trends Biotechnol, 33(6):323-330.

[19]NieXL, XingY, LiQF, et al., 2022. ARTP mutagenesis promotes selenium accumulation in Saccharomyces boulardii. LWT, 168:113916.

[20]NieXL, YangXR, HeJY, et al., 2023. Bioconversion of inorganic selenium to less toxic selenium forms by microbes: a review. Front Bioeng Biotechnol, 11:1167123.

[21]OjedaJJ, MerrounML, TugarovaAV, et al., 2020. Developments in the study and applications of bacterial transformations of selenium species. Crit Rev Biotechnol, 40(8):1250-1264.

[22]PearceCI, CokerVS, CharnockJM, et al., 2008. Microbial manufacture of chalcogenide-based nanoparticles via the reduction of selenite using Veillonella atypica : an in situ EXAFS study. Nanotechnology, 19(15):155603.

[23]QiaoL, DouXN, SongXF, et al., 2023. Selenite bioremediation by food-grade probiotic Lactobacillus casei ATCC 393: insights from proteomics analysis. Microbiol Spectr, 11(3):e0065923.

[24]QuLL, XuJY, DaiZH, et al., 2023. Selenium in soil-plant system: transport, detoxification and bioremediation. J Hazard Mater, 452:131272.

[25]TendenedzaiJT, ChirwaEMN, BrinkHG, 2021. Performance evaluation of selenite (SeO32-) reduction by Enterococcus spp. Catalysts, 11(9):1024.

[26]TorresAN, Chamorro-VelosoN, CostaP, et al., 2020. Deciphering additional roles for the EF-Tu, L-asparaginase II and OmpT proteins of Shiga toxin-producing Escherichia coli. Microorganisms, 8(8):1184.

[27]TugarovaAV, KamnevAA, 2017. Proteins in microbial synthesis of selenium nanoparticles. Talanta, 174:539-547.

[28]TugarovaAV, MamchenkovaPV, KhanadeevVA, et al., 2020. Selenite reduction by the rhizobacterium Azospirillum brasilense, synthesis of extracellular selenium nanoparticles and their characterisation. New Biotechnol, 58:17-24.

[29]WadhwaniSA, ShedbalkarUU, SinghR, et al., 2016. Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol, 100(6):2555-2566.

[30]WidjajaM, HarveyKL, HagemannL, et al., 2017. Elongation factor Tu is a multifunctional and processed moonlighting protein. Sci Rep, 7:11227.

[31]YangQ, LiuJX, WangKY, et al., 2018. Evaluation of immunogenicity and protective efficacy of the elongation factor Tu against Streptococcus agalactiae in tilapia. Aquaculture, 492:184-189.

[32]ZamboninoMC, QuizhpeEM, JaramilloFE, et al., 2021. Green synthesis of selenium and tellurium nanoparticles: current trends, biological properties and biomedical applications. Int J Mol Sci, 22(3):989.

[33]ZamboninoMC, QuizhpeEM, MouhebL, et al., 2023. Biogenic selenium nanoparticles in biomedical sciences: properties, current trends, novel opportunities and emerging challenges in theranostic nanomedicine. Nanomaterials, 13(3):424.

[34]ZhangHY, HouZH, ZhangY, et al., 2022. A soybean EF-Tu family protein GmEF8, an interactor of GmCBL1, enhances drought and heat tolerance in transgenic Arabidopsis and soybean. Int J Biol Macromol, 205:462-472.

[35]ZhangS, HeYD, SenB, et al., 2020. Reactive oxygen species and their applications toward enhanced lipid accumulation in oleaginous microorganisms. Bioresour Technol, 307:123234.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE