Full Text:   <527>

Summary:  <25>

CLC number: 

On-line Access: 2025-01-14

Received: 2023-12-06

Revision Accepted: 2024-04-19

Crosschecked: 2024-10-21

Cited: 0

Clicked: 904

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2025 Vol.26 No.1 P.39-51

http://doi.org/10.1631/jzus.B2300880


Aberrant network topological structure of sensorimotor superficial white-matter system in major depressive disorder


Author(s):  Peng WANG, Yanling BAI, Yang XIAO, Yuhong ZHENG, Li SUN, The DIRECT Consortium, Jinhui WANG, Shaowei XUE

Affiliation(s):  Center for Cognition and Brain Disorders / Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 311121, China; more

Corresponding email(s):   xuedrm@126.com

Key Words:  Major depressive disorder (MDD), Magnetic resonance imaging (MRI), White matter, Brain network


Peng WANG, Yanling BAI, Yang XIAO, Yuhong ZHENG, Li SUN, The DIRECT Consortium, Jinhui WANG, Shaowei XUE. Aberrant network topological structure of sensorimotor superficial white-matter system in major depressive disorder[J]. Journal of Zhejiang University Science B, 2025, 26(1): 39-51.

@article{title="Aberrant network topological structure of sensorimotor superficial white-matter system in major depressive disorder",
author="Peng WANG, Yanling BAI, Yang XIAO, Yuhong ZHENG, Li SUN, The DIRECT Consortium, Jinhui WANG, Shaowei XUE",
journal="Journal of Zhejiang University Science B",
volume="26",
number="1",
pages="39-51",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2300880"
}

%0 Journal Article
%T Aberrant network topological structure of sensorimotor superficial white-matter system in major depressive disorder
%A Peng WANG
%A Yanling BAI
%A Yang XIAO
%A Yuhong ZHENG
%A Li SUN
%A The DIRECT Consortium
%A Jinhui WANG
%A Shaowei XUE
%J Journal of Zhejiang University SCIENCE B
%V 26
%N 1
%P 39-51
%@ 1673-1581
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2300880

TY - JOUR
T1 - Aberrant network topological structure of sensorimotor superficial white-matter system in major depressive disorder
A1 - Peng WANG
A1 - Yanling BAI
A1 - Yang XIAO
A1 - Yuhong ZHENG
A1 - Li SUN
A1 - The DIRECT Consortium
A1 - Jinhui WANG
A1 - Shaowei XUE
J0 - Journal of Zhejiang University Science B
VL - 26
IS - 1
SP - 39
EP - 51
%@ 1673-1581
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2300880


Abstract: 
White-matter tracts play a pivotal role in transmitting sensory and motor information, facilitating interhemispheric communication and integrating different brain regions. Meanwhile, sensorimotor disturbance is a common symptom in patients with major depressive disorder (MDD). However, the role of aberrant sensorimotor white-matter system in MDD remains largely unknown. Herein, we investigated the topological structure alterations of white-matter morphological brain networks in 233 MDD patients versus 257 matched healthy controls (HCs) from the DIRECT consortium. White-matter networks were derived from magnetic resonance imaging (MRI) data by combining voxel-based morphometry (VBM) and three-dimensional discrete wavelet transform (3D-DWT) approaches. Support vector machine (SVM) analysis was performed to discriminate MDD patients from HCs. The results indicated that the network topological changes in node degree, node efficiency, and node betweenness were mainly located in the sensorimotor superficial white-matter system in MDD. Using network nodal topological properties as classification features, the SVM model could effectively distinguish MDD patients from HCs. These findings provide new evidence to highlight the importance of the sensorimotor system in brain mechanisms underlying MDD from a new perspective of white-matter morphological network.

重度抑郁症感觉运动浅表白质系统的网络拓扑结构异常

王鹏1,2,3, 白艳玲4, 肖杨5, 郑宇宏1,2,3, 孙励1,2,3, The DIRECT Consortium, 王金辉6, 薛绍伟1,2,3
1杭州师范大学附属医院认知与脑疾病研究中心/神经内科, 中国杭州市, 311121
2杭州师范大学心理科学研究院, 中国杭州市, 311121
3浙江省认知障碍评估技术研究重点实验室, 中国杭州市, 311121
4杭州师范大学经亨颐教育学院, 中国杭州市, 311121
5北京大学第六医院精神卫生研究所, 中国北京市, 100191
6华南师范大学脑科学与康复医学研究院, 中国广州市, 510631
摘要:白质纤维在传递感觉和运动信息、促进两侧大脑间的通讯及整合不同脑区方面发挥着至关重要的作用。与此同时,感觉运动功能异常是重度抑郁症(MDD)患者的常见症状之一。然而,MDD中异常的感觉运动白质系统的作用大部分仍是未知的。本研究调查了来自DIRECT联盟的233名MDD患者与257名匹配的健康对照(HC)的白质形态脑网络的拓扑结构变化。白质网络是通过结合基于体素的形态学测量(VBM)和三维离散小波变换(3D-DWT)方法,从磁共振成像(MRI)数据中构建出来,通过使用支持向量机(SVM)分析区分MDD和HC。结果表明,在MDD中,节点度、节点效率和节点介数的网络拓扑异常主要位于感觉运动浅表白质系统中。利用网络节点拓扑特性作为分类特征,SVM模型能有效区分MDD和HC。上述发现从白质形态脑网络的视角出发,强调了感觉运动系统在MDD脑机制中的重要性。

关键词:重度抑郁症;磁共振成像;白质;脑网络

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alexander-BlochA,ClasenL,StockmanM,et al.,2016.Subtle in-scanner motion biases automated measurement of brain anatomy from in vivo MRI.Hum Brain Mapp,37(7):2385-2397.

[2]AshburnerJ,2007.A fast diffeomorphic image registration algorithm.NeuroImage,38(1):95-113.

[3]AydoganDB,JacobsR,DulawaS,et al.,2018.When tractography meets tracer injections: a systematic study of trends and variation sources of diffusion-based connectivity.Brain Struct Funct,223(6):2841-2858.

[4]BassettDS,SpornsO,2017.Network neuroscience.Nat Neurosci,20(3):353-364.

[5]BaumGL,RoalfDR,CookPA,et al.,2018.The impact of in-scanner head motion on structural connectivity derived from diffusion MRI.NeuroImage,173:275-286.

[6]BullmoreE,SpornsO,2012.The economy of brain network organization.Nat Rev Neurosci,13(5):336-349.

[7]CanbeyliR,2013.Sensorimotor modulation of mood and depression: in search of an optimal mode of stimulation.Front Hum Neurosci,7:428.

[8]ChenX,LuB,LiHX,et al.,2022.The direct consortium and the REST-meta-MDD project: towards neuroimaging biomarkers of major depressive disorder.Psychoradiology,2(1):32-42.

[9]FanYS,LiZH,DuanXJ,et al.,2020.Impaired interactions among white-matter functional networks in antipsychotic-naive first-episode schizophrenia.Hum Brain Mapp,41(1):230-240.

[10]FieldsRD,2010.Change in the brain’s white matter.Science,330(6005):768-769.

[11]FilleyCM,1998.The behavioral neurology of cerebral white matter.Neurology,50(6):1535-1540.

[12]FortinJP,CullenN,ShelineYI,et al.,2018.Harmonization of cortical thickness measurements across scanners and sites.NeuroImage,167:104-120.

[13]GeorgiadisF,LarivièreS,GlahnD,et al.,2024.Connectome architecture shapes large-scale cortical alterations in schizophrenia: a worldwide ENIGMA study.Mol Psychiatry,29:1869-1881.

[14]HoneyCJ,ThiviergeJP,SpornsO,2010.Can structure predict function in the human brain?NeuroImage,52(3):766-776.

[15]IwabuchiSJ,KrishnadasR,LiCB,et al.,2015.Localized connectivity in depression: a meta-analysis of resting state functional imaging studies.Neurosci Biobehav Rev,51:77-86.

[16]KorgaonkarMS,FornitoA,WilliamsLM,et al.,2014.Abnormal structural networks characterize major depressive disorder: a connectome analysis.Biol Psychiatry,76(7):567-574.

[17]LiHR,YangJ,YinL,et al.,2021.Alteration of single-subject gray matter networks in major depressed patients with suicidality.J Magn Reson Imaging,54(1):215-224.

[18]LiJ,ChenH,FanFY,et al.,2020.White-matter functional topology: a neuromarker for classification and prediction in unmedicated depression.Transl Psychiat,10:365.

[19]LiJL,LiZ,YangYP,et al.,2023.Morphological brain networks of white matter: mapping, evaluation, characterization, and application.Adv Sci,11(35):e2400061.

[20]LiaoXH,VasilakosAV,HeY,2017.Small-world human brain networks: perspectives and challenges.Neurosci Biobehav Rev,77:286-300.

[21]LuFM,CuiQ,HuangXJ,et al.,2020.Anomalous intrinsic connectivity within and between visual and auditory networks in major depressive disorder.Prog Neuro-Psychopharmacol Biol Psychiatry,100:109889.

[22]LuscherB,ShenQ,SahirN,2011.The GABaergic deficit hypothesis of major depressive disorder.Mol Psychiatry,16(4):383-406.

[23]MaN,LiLJ,ShuN,et al.,2007.White matter abnormalities in first-episode, treatment-naive young adults with major depressive disorder.Am J Psychiatry,164(5):823-826.

[24]MalhiGS,MannJJ,2018.Depression.Lancet,392(10161):2299-2312.

[25]MaslovS,SneppenK,2002.Specificity and stability in topology of protein networks.Science,296(5569):910-913.

[26]MeinertzhagenIA,2018.Of what use is connectomics?A personal perspective on the Drosophila connectome. J Exp Biol,221(10):jeb164954.

[27]NakanoT,TakamuraM,IchikawaN,et al.,2020.Enhancing multi-center generalization of machine learning-based depression diagnosis from resting-state fMRI.Front Psychiatry,11:400.

[28]PardoeHR,MartinSP,2022.In-scanner head motion and structural covariance networks.Hum Brain Mapp,43(14):4335-4346.

[29]PeerM,NitzanM,BickAS,et al.,2017.Evidence for functional networks within the human brain’s white matter.J Neurosci,37(27):6394-6407.

[30]PetersenSE,SpornsO,2015.Brain networks and cognitive architectures.Neuron,88(1):207-219.

[31]PetrellaJR,2011.Use of graph theory to evaluate brain networks: a clinical tool for a small world?Radiology,259(2):317-320.

[32]PowerJD,CohenAL,NelsonSM,et al.,2011.Functional network organization of the human brain.Neuron,72(4):665-678.

[33]RamasubbuR,BrownMRG,CorteseF,et al.,2016.Accuracy of automated classification of major depressive disorder as a function of symptom severity.NeuroImage Clin,12:320-331.

[34]Sampaio-BaptistaC,Johansen-BergH,2017.White matter plasticity in the adult brain.Neuron,96(6):1239-1251.

[35]SchillingKG,GaoYR,StepniewskaI,et al.,2019.Anatomical accuracy of standard-practice tractography algorithms in the motor system‍ –‍ a histological validation in the squirrel monkey brain.Magn Reson Imaging,55:7-25.

[36]SeidlitzJ,VášaF,ShinnM,et al.,2018.Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation.Neuron,97(1):231-247.e7.

[37]ShiYC,ZhangLH,WangZ,et al.,2021.Multivariate machine learning analyses in identification of major depressive disorder using resting-state functional connectivity: a multicentral study.ACS Chem Neurosci,12(15):‍2878-2886.

[38]WangJH,WangXD,XiaMR,et al.,2015.GRETNA: a graph theoretical network analysis toolbox for imaging connectomics.Front Hum Neurosci,9:386.

[39]WangP,WangJL,MichaelA,et al.,2022.White matter functional connectivity in resting-state fMRI: robustness, reliability, and relationships to gray matter.Cereb Cortex,32(8):1547-1559.

[40]WangXH,ZhaoBH,LiLH,2022.Mapping white matter structural covariance connectivity for single subject using wavelet transform with T1-weighted anatomical brain MRI.Front Neurosci,16:1038514.

[41]WangY,LiuG,HongDD,et al.,2016.White matter injury in ischemic stroke.Prog Neurobiol,141:45-60.

[42]WhitwellJL,2009.Voxel-based morphometry: an automated technique for assessing structural changes in the brain.J Neurosci,29(31):9661-9664.

[43]XiaoY,ZhaoL,ZangXL,et al.,2023.Compressed primary-to-transmodal gradient is accompanied with subcortical alterations and linked to neurotransmitters and cellular signatures in major depressive disorder.Hum Brain Mapp,44(17):5919-5935.

[44]YanCG,ChenX,LiL,et al.,2019.Reduced default mode network functional connectivity in patients with recurrent major depressive disorder.Proc Natl Acad Sci USA,116(18):9078-9083.

[45]YangH,ChenX,ChenZB,et al.,2021.Disrupted intrinsic functional brain topology in patients with major depressive disorder.Mol Psychiatry,26(12):7363-7371.

[46]YeoBTT,KrienenFM,SepulcreJ,et al.,2011.The organization of the human cerebral cortex estimated by intrinsic functional connectivity.J Neurophysiol,106(3):1125-1165.

[47]ZaleskyA,FornitoA,HardingIH,et al.,2010.Whole-brain anatomical networks: does the choice of nodes matter?NeuroImage,50(3):970-983.

[48]ZhangFF,PengW,SweeneyJA,et al.,2018.Brain structure alterations in depression: psychoradiological evidence.CNS Neurosci Ther,24(11):994-1003.

[49]ZhangYR,LiuXY,HouZH,et al.,2021.Global topology alteration of the brain functional network affects the 8-week antidepressant response in major depressive disorder.J Affect Disord,294:491-496.

[50]ZhangZQ,LiaoW,ChenHF,et al.,2011.Altered functional–structural coupling of large-scale brain networks in idiopathic generalized epilepsy.Brain,134(10):2912-2928.

[51]ZhouY,ZhuYH,YeHT,et al.,2024.Abnormal changes of dynamic topological characteristics in patients with major depressive disorder.J Affect Disord,345:349-357.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE