Full Text:   <450>

CLC number: 

On-line Access: 2024-08-23

Received: 2023-08-31

Revision Accepted: 2024-02-09

Crosschecked: 0000-00-00

Cited: 0

Clicked: 687

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Bio-Design and Manufacturing  2024 Vol.7 No.5 P.747-770

http://doi.org/10.1007/s42242-024-00291-5


Advanced Strategies for 3D-Printed Neural Scaffolds: Materials, Structure, and Nerve Remodeling


Author(s):  Jian He, Liang Qiao, Jiuhong Li, Junlin Lu, Zhouping Fu, Jiafang Chen, Xiangchun Zhang, Xulin Hu

Affiliation(s):  College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China; more

Corresponding email(s):   huxulin1993@163.com, zhangxc@tricaas.com, qiaoliangjoy@gmail.com

Key Words:  Nerve regeneration, 3D printing based neural scaffolds, biomaterials, nervous system, design strategies


Share this article to: More


Abstract: 
nerve regeneration holds significant potential in the treatment of various skeletal and neurological disorders to restore lost sensory and motor functions. The potential of nerve regeneration in ameliorating neurological diseases and injuries is critical to human health. Three-dimensional (3D) printing offers versatility and precision in the fabrication of neural scaffolds. Complex neural structures such as neural tubes and scaffolds can be fabricated via 3D printing. This review comprehensively analyzes the current state of 3D-printed neural scaffolds and explores strategies to enhance their design. It highlights therapeutic strategies and structural design involving neural materials and stem cells. First, nerve regeneration materials and their fabrication techniques are outlined. The applications of conductive materials in neural scaffolds are reviewed, and their potential to facilitate neural signal transmission and regeneration is highlighted. Second, the progress in 3D-printed neural scaffolds applied to the peripheral and central nerves is comprehensively evaluated, and their potential to restore neural function and promote the recovery of different nervous systems is emphasized. In addition, various applications of 3D-printed neural scaffolds in peripheral and neurological diseases, as well as the design strategies of multifunctional biomimetic scaffolds, are discussed.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE