CLC number: TN82
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-12-08
Cited: 0
Clicked: 7172
Gang Dong, Wei Xiong, Zhao-yao Wu, Yin-tang Yang. Antenna-in-package system integrated with meander line antenna based on LTCC technology[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(1): 67-73.
@article{title="Antenna-in-package system integrated with meander line antenna based on LTCC technology",
author="Gang Dong, Wei Xiong, Zhao-yao Wu, Yin-tang Yang",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="1",
pages="67-73",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1500167"
}
%0 Journal Article
%T Antenna-in-package system integrated with meander line antenna based on LTCC technology
%A Gang Dong
%A Wei Xiong
%A Zhao-yao Wu
%A Yin-tang Yang
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 1
%P 67-73
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1500167
TY - JOUR
T1 - Antenna-in-package system integrated with meander line antenna based on LTCC technology
A1 - Gang Dong
A1 - Wei Xiong
A1 - Zhao-yao Wu
A1 - Yin-tang Yang
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 1
SP - 67
EP - 73
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1500167
Abstract: We present an antenna-in-package system integrated with a meander line antenna based on low temperature co-fired ceramic (LTCC) technology. The proposed system employs a meander line patch antenna, a packaging layer, and a laminated multi-chip module (MCM) for integration of integrated circuit (IC) bare chips. A microstrip feed line is used to reduce the interaction between patch and package. To decrease electromagnetic coupling, a via hole structure is designed and analyzed. The meander line antenna achieved a bandwidth of 220 MHz with the center frequency at 2.4 GHz, a maximum gain of 2.2 dB, and a radiation efficiency about 90% over its operational frequency. The whole system, with a small size of 20.2 mm×6.1 mm×2.6 mm, can be easily realized by a standard LTCC process. This antenna-in-package system integrated with a meander line antenna was fabricated and the experimental results agreed with simulations well.
The manuscript developed AiP using LTCC technology. There are many interesting observations.
[1]Abutarboush, H.F., Nilavalan, R., Cheung, S.W., et al., 2012. A reconfigurable wideband and multiband antenna using dual-patch elements for compact wireless devices. IEEE Trans. Antennas Propagat., 60(1):36-43.
[2]Al-Sarawi, S.F., Abbott, D., Franzon, P.D., 1998. A review of 3-D packaging technology. IEEE Trans. Compon. Packag., Manuf. Technol. B, 21(1):2-14.
[3]Beer, S., Pires, L., Rusch, C., et al., 2012. Microstrip slot antenna array in LTCC technology for a 122 GHz system-in-package. IEEE Antennas and Propagation Society Int. Symp., p.1-2.
[4]Brzezina, G.M., Amaya, R.E., Lee, D., et al., 2011. A 60 GHz system-on-package balanced antipodal Vivaldi antenna with stepped dielectric director (BAVA-SDD) in LTCC. Proc. 41st European Microwave Conf., p.547-550.
[5]Endo, T., Sunahara, Y., Satoh, S., et al., 2000. Resonant frequency and radiation efficiency of meander line antennas. Electron. Commun. Jpn. (Part II: Electron.), 83(1):52-58.
[6]Gong, S.P., Qu, J.R., Hu, Y.X., et al., 2010. Design of triple-band LTCC antenna using meander line structure for mobile handsets. Int. Conf. on Microwave and Millimeter Wave Technology, p.370-372.
[7]Kadam, R.S., Kulkarni, V., 2015. Study of meander microstrip patch antenna for reconfiguration purpose. Int. Conf. on Pervasive Computing, p.1-4.
[8]Li, J.H., Dong, Z.W., Yang, B.C., 2006. The technique research on LTCC 3D-MCM. 7th Int. Conf. on Electronic Packaging Technology, p.1-4.
[9]Liu, X.B., Li, Y.S., Yu, W.H., 2014. A simple dual-band antenna using a meander line and a tapered rectangle patch for WLAN applications. IEEE Int. Conf. on Communication Problem-Solving, p.542-545.
[10]Malekpoor, H., Jam, S., 2013. Miniaturised asymmetric E-shaped microstrip patch antenna with folded-patch feed. IET Microw. Antennas Propag., 7(2):85-91.
[11]Nassar, I.T., Weller, T.M., 2011. The ground plane effect of a small meandered line antenna. IEEE 12th Annual Wireless and Microwave Technology Conf., p.1-5.
[12]Pasakawee, S., Hu, Z.R., 2012. Electrical small meander line patch antenna. 6th European Conf. on Antennas and Propagation, p.2914-2918.
[13]Sharma, V., Saxena, V.K., Saini, J.S., et al., 2009. Single-feed compact wideband elliptical patch antenna with narrow slits. Applied Electromagnetics Conf., p.1-4.
Open peer comments: Debate/Discuss/Question/Opinion
<1>