Full Text:   <2596>

Summary:  <1813>

CLC number: TN918.8

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2016-09-11

Cited: 0

Clicked: 6591

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Chao Gao

http://orcid.org/0000-0002-7256-7167

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2016 Vol.17 No.10 P.1074-1084

http://doi.org/10.1631/FITEE.1601070


Secrecy performance analysis of single-input multiple-output generalized-K fading channels


Author(s):  Hong-jiang Lei, Imran Shafique Ansari, Chao Gao, Yong-cai Guo, Gao-feng Pan, Khalid A. Qaraqe

Affiliation(s):  Chongqing Key Laboratory of Mobile Communications Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; more

Corresponding email(s):   leihj@cqupt.edu.cn, chaogaocqu@126.com

Key Words:  Physical-layer security, Generalized-K fading, Average secrecy capacity, Secrecy outage probability, Mixture Gamma distribution


Hong-jiang Lei, Imran Shafique Ansari, Chao Gao, Yong-cai Guo, Gao-feng Pan, Khalid A. Qaraqe. Secrecy performance analysis of single-input multiple-output generalized-K fading channels[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(10): 1074-1084.

@article{title="Secrecy performance analysis of single-input multiple-output generalized-K fading channels",
author="Hong-jiang Lei, Imran Shafique Ansari, Chao Gao, Yong-cai Guo, Gao-feng Pan, Khalid A. Qaraqe",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="17",
number="10",
pages="1074-1084",
year="2016",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601070"
}

%0 Journal Article
%T Secrecy performance analysis of single-input multiple-output generalized-K fading channels
%A Hong-jiang Lei
%A Imran Shafique Ansari
%A Chao Gao
%A Yong-cai Guo
%A Gao-feng Pan
%A Khalid A. Qaraqe
%J Frontiers of Information Technology & Electronic Engineering
%V 17
%N 10
%P 1074-1084
%@ 2095-9184
%D 2016
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601070

TY - JOUR
T1 - Secrecy performance analysis of single-input multiple-output generalized-K fading channels
A1 - Hong-jiang Lei
A1 - Imran Shafique Ansari
A1 - Chao Gao
A1 - Yong-cai Guo
A1 - Gao-feng Pan
A1 - Khalid A. Qaraqe
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 17
IS - 10
SP - 1074
EP - 1084
%@ 2095-9184
Y1 - 2016
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601070


Abstract: 
In this paper, the transmission of confidential messages through single-input multiple-output (SIMO) independent and identically generalized-K (KG) fading channels is considered, where the eavesdropper overhears the transmission from the transmitter to the receiver. Both the receiver and the eavesdropper are equipped with multiple antennas, and both active and passive eavesdroppings are considered where the channel state information of the eavesdropper's channel is or is not available at the transmitter. The secrecy performance of SIMO KG systems is investigated. Analytical expressions for secrecy outage probability and average secrecy capacity of SIMO systems are derived via two different methods, in which KG distribution is approximated by the Gamma and mixture Gamma distributions, respectively. Numerical results are presented and verified via the Monte-Carlo simulation.

基于generalized-K信道的SIMO的物理层安全性能分析

概要:该文研究了基于generalized-K信道的单发多收系统的物理层安全性能。分别考虑源节点在有和没有窃听信道的信道状态信息的两种情况,将generalized-K分布近似为伽马分布和混合伽马分布,分别推导出系统的保密中断概率和平均保密容量的解析表达式。最后通过蒙特卡罗仿真验证了分析结果。

关键词:物理层安全;generalized-K衰落;平均保密容量;保密中断概率;混合伽马分布

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdi, A., Kaveh, M., 1998. K distribution: an appropriate substitute for Rayleigh-lognormal distribution in fading-shadowing wireless channels. Electron. Lett., 34(9):851-852.

[2]Abramowitz, M., Stegun, I.A., 1972. Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Dover Press, New York.

[3]Adamchik, V.S., Marichev, O.I., 1990. The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system. Proc. Int. Symp. on Symbolic and Algebraic Computation, p.212-224.

[4]Al-Ahmadi, S., Yanikomeroglu, H., 2010a. On the approximation of the generalized-K distribution by a Gamma distribution for modeling composite fading channels. IEEE Trans. Wirel. Commun., 9(2):706-713.

[5]Al-Ahmadi, S., Yanikomeroglu, H., 2010b. On the approximation of the PDF of the sum of independent generalized-K RVs by another generalized-K PDF with applications to distributed antenna systems. Proc. IEEE Wireless Communications and Networking Conf., p.1-6.

[6]Ansari, I.S., Al-Ahmadi, S., Yilmaz, F., et al., 2011. A new formula for the BER of binary modulations with dual-branch selection over generalized-K composite fading channels. IEEE Trans. Commun., 59(10):2654-2658.

[7]Ata, S.Ö., Altunbac{s}, .{I}., 2015. Relay antenna selection for V2V communications using PLNC over cascaded fading channels. Proc. Int. Wireless Communications and Mobile Computing Conf., p.1336-1340.

[8]Atapattu, S., Tellambura, C., Jiang, H., 2011. A mixture Gamma distribution to model the SNR of wireless channels. IEEE Trans. Wirel. Commun., 10(12):4193-4203.

[9]Bithas, P.S., Rontogiannis, A.A., 2015. Mobile communication systems in the presence of fading/shadowing, noise and interference. IEEE Trans. Commun., 63(3):724-737.

[10]Bithas, P.S., Sagias, N.C., Mathiopoulos, P.T., et al., 2006. On the performance analysis of digital communications over generalized-K fading channels. IEEE Commun. Lett., 10(5):353-355.

[11]Bloch, M., Barros, J., Rodrigues, M.R.D., et al., 2008. Wireless information-theoretic security. IEEE Trans. Inform. Theory, 54(6):2515-2534.

[12]Chatzidiamantis, N.D., Karagiannidis, G.K., 2011. On the distribution of the sum of Gamma-Gamma variates and applications in RF and optical wireless communications. IEEE Trans. Commun., 59(5):1298-1308.

[13]Cheng, W., 2013. Performance analysis and comparison of dual-hop amplify-and-forward relaying over mixture Gamma and generalized-K fading channels. Proc. Int. Conf. on Wireless Communications & Signal Processing, p.1-6.

[14]Gradshteyn, I., Ryzhik, I., 2007. Table of Integrals, Series, and Products (7th Ed.). Academic Press, USA.

[15]Jiang, Y., Zhu, J., Zou, Y., 2015. Secrecy outage analysis of multi-user multi-eavesdropper cellular networks in the face of cochannel interference. Dig. Commun. Netw., 1(1):68-74.

[16]Jung, J., Lee, S.R., Park, H., et al., 2013. Diversity analysis over composite fading channels using a mixture Gamma distribution. Proc. IEEE Int. Conf. on Communications, p.5824-5828.

[17]Jung, J., Lee, S.R., Park, H., et al., 2014. Capacity and error probability analysis of diversity reception schemes over generalized-K fading channels using a mixture Gamma distribution. IEEE Trans. Wirel. Commun., 13(9):4721-4730.

[18]Laourine, A., Alouini, M.S., Affes, S., et al., 2009. On the performance analysis of composite multipath/shadowing channels using the G-distribution. IEEE Trans. Commun., 57(4):1162-1170.

[19]Lei, H., Gao, C., Ansari, I., et al., 2015a. On physical layer security over SIMO generalized-K fading channels. IEEE Trans. Veh. Technol., 65(9):7780-7785.

[20]Lei, H., Gao, C., Guo, Y., et al., 2015b. On physical layer security over generalized Gamma fading channels. IEEE Commun. Lett., 19(7):1257-1260.

[21]Lei, H., Zhang, H., Ansari, I., et al., 2016a. Performance analysis of physical layer security over generalized-K fading channels using a mixture Gamma distribution. IEEE Commun. Lett., 20(2):408-411.

[22]Lei, H., Zhang, H., Ansari, I., et al., 2016b. Secrecy outage analysis for SIMO underlay cognitive radio networks over generalized-K fading channels. IEEE Signal Process. Lett., 23(8):1106-1110.

[23]Liu, H., Zhao, H., Jiang, H., et al., 2016. Physical-layer secrecy outage of spectrum sharing CR systems over fading channels. Sci. China Inform. Sci., 59:102308.

[24]Liu, X., 2013. Probability of strictly positive secrecy capacity of the Weibull fading channel. Proc. IEEE Global Communications Conf., p.659-664.

[25]Pan, G., Tang, C., Zhang, X., et al., 2016. Physical-layer security over non-small-scale fading channels. IEEE Trans. Veh. Technol., 65(3):1326-1339.

[26]Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I., 1992. Integrals and Series, Volume 2: Special Functions. Gordon and Breach Science Publishers, New York.

[27]Shankar, P.M., 2004. Error rates in generalized shadowed fading channels. Wirel. Pers. Commun., 28(3):233-238.

[28]Stuber, G.L., 2011. Principles of Mobile Communication. Springer Science & Business Media, New York.

[29]Wang, L., Elkashlan, M., Huang, J., et al., 2014. Secure transmission with antenna selection in MIMO Nakagami-m fading channels. IEEE Trans. Wirel. Commun., 13(11):6054-6067.

[30]Yadav, S., Upadhyay, P.K., 2013. Performance analysis of two-way AF relaying systems over cascaded generalized-K fading channels. Proc. National Conf. on Communications, p.1-5.

[31]Yang, N., Wang, L., Geraci, G., et al., 2015. Safeguarding 5G wireless communication networks using physical layer security. IEEE Commun. Mag., 53(4):20-27.

[32]Zou, Y., Wang, X., Shen, W., 2013. Optimal relay selection for physical-layer security in cooperative wireless networks. IEEE J. Sel. Areas Commun., 31(10):2099-2111.

[33]Zou, Y., Champagne, B., Zhu, W.P., et al., 2015a. Relay-selection improves the security-reliability trade-off in cognitive radio systems. IEEE Trans. Commun., 63(1):215-228.

[34]Zou, Y., Zhu, J., Wang, X., et al., 2015b. Improving physical-layer security in wireless communications using diversity techniques. IEEE Netw., 29(1):42-48.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE