Full Text:   <9158>

Summary:  <9074>

CLC number: TP242

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-07-13

Cited: 0

Clicked: 18021

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2017 Vol.18 No.7 P.898-914

http://doi.org/10.1631/FITEE.1601735


Steering control for underwater gliders


Author(s):  You Liu, Qing Shen, Dong-li Ma, Xiang-jiang Yuan

Affiliation(s):  School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; more

Corresponding email(s):   542165262@qq.com, yuan_xj18@163.com

Key Words:  Autonomous underwater glider (AUG), Online system identification, Steering control, Adaptive control, Optimal control, Energy saving control, Processor-in-loop (PIL)


You Liu, Qing Shen, Dong-li Ma, Xiang-jiang Yuan. Steering control for underwater gliders[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(7): 898-914.

@article{title="Steering control for underwater gliders",
author="You Liu, Qing Shen, Dong-li Ma, Xiang-jiang Yuan",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="18",
number="7",
pages="898-914",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1601735"
}

%0 Journal Article
%T Steering control for underwater gliders
%A You Liu
%A Qing Shen
%A Dong-li Ma
%A Xiang-jiang Yuan
%J Frontiers of Information Technology & Electronic Engineering
%V 18
%N 7
%P 898-914
%@ 2095-9184
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1601735

TY - JOUR
T1 - Steering control for underwater gliders
A1 - You Liu
A1 - Qing Shen
A1 - Dong-li Ma
A1 - Xiang-jiang Yuan
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 18
IS - 7
SP - 898
EP - 914
%@ 2095-9184
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1601735


Abstract: 
steering control for an autonomous underwater glider (AUG) is very challenging due to its changing dynamic characteristics such as payload and shape. A good choice to solve this problem is online system identification via in-field trials to capture current dynamic characteristics for control law reconfiguration. Hence, an online polynomial estimator is designed to update the yaw dynamic model of the AUG, and an adaptive model predictive control (MPC) controller is used to calculate the optimal control command based on updated estimated parameters. The MPC controller uses a quadratic program (QP) to compute the optimal control command based on a user-defined cost function. The cost function has two terms, focusing on output reference tracking and move suppression of input, respectively. Move-suppression performance can, at some level, represent energy-saving performance of the MPC controller. Users can balance these two competitive control performances by tuning weights. We have compared the control performance using the second-order polynomial model to that using the fifth-order polynomial model, and found that the former cannot capture the main characteristics of yaw dynamics and may result in vibration during the flight. Both processor-in-loop (PIL) simulations and in-lake tests are presented to validate our steering control performance.

水下滑翔机航向控制

概要:水下滑翔机动力学特性随有效载荷及外形变化而变化,其航向控制富有挑战性。解决方法是使用在线系统辨识算法捕捉当前动力学特性,更新运动模型。为此,我们设计了一个在线多项式辨识器,不断更新当前动力学模型,同时用一个自适应模型预测控制器计算并输出最优化的控制指令。该控制器根据用户自定义的指标函数,使用二次规划方法得到最优控制指令。该指标函数由两项组成,一项用来表达轨迹跟踪性能,一项用来表达输入指令抑制性能。输入指令抑制性能一定程度上可以代表该控制器的能量消耗性能。设计师可以通过调节这两项的权重,平衡两个控制器的性能。比较二次与五次多项式模型的控制效果,发现:二次多项式模型不足以表达无人机的动力学特性,且控制结果易发生剧烈波动。硬件在环模拟以及湖试结果验证了控制器性能。

关键词:水下滑翔机;在线系统辨识;航向控制;自适应控制;最优控制;节能控制;硬件在环模拟

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alvarez, A., Caffaz, A., Caiti, A., et al., 2009. Fòlaga: a low-cost autonomous underwater vehicle combining glider and AUV capabilities. Ocean Eng., 36(1):24-38.

[2]Caccia, M., Indiveri, G., Veruggio, G., 2000. Modeling and identification of open-frame variable configuration unmanned underwater vehicles. IEEE J. Ocean. Eng., 25(2): 227-240.

[3]Chen, H.T., 1981. Submarine Maneuverability. National Defense Industry Press, Beijing (in Chinese).

[4]Eng, Y.H., Teo, K.M., Chitre, M., et al., 2016. Online system identification of an autonomous underwater vehicle via in-field experiments. IEEE J. Ocean. Eng., 41(1):5-17.

[5]

[6]Eriksen, C.C., Osse, T.J., Light, R.D., et al., 2001. Seaglider: a long-range autonomous underwater vehicle for oceanographic research. IEEE J. Ocean. Eng., 26(4):424-436.

[7]

[8]Graver, J.G., 2005. Underwater Gliders: Dynamics, Control and Design. PhD Thesis, Princeton University, New Jersey, USA.

[9]Isa, K., Arshad, M.R., Ishak, S., 2014. A hybrid-driven underwater glider model, hydrodynamics estimation, and an analysis of the motion control. Ocean Eng., 81:111-129.

[10]

[11]Leonard, N.E., Graver, J.G., 2001. Model-based feedback control of autonomous underwater gliders. IEEE J. Ocean. Eng., 26(4):633-645.

[12]

[13]Li, J., Lu, C.J., Huang, X., 2010. Calculation of added mass of a vehicle running with cavity. J. Hydrodynam. Ser. B, 22(3):312-318.

[14]Li, T.S., 1999. Torpedo Maneuverability. National Defense Industry Press, Beijing (in Chinese).

[15]Liu, Y., Shen, Q., Ma, D.L., et al., 2016. Theoretical and experimental study of anti-helical motion for underwater glider. Appl. Ocean Res., 60:121-140.

[16]

[17]Mišković, N., Vukić, Z., Bibuli, M., et al., 2011. Fast in-field identification of unmanned marine vehicles. J. Field Robot., 28(1):101-120.

[18]

[19]Phoemsapthawee, S., Le Boulluec, M., Laurens, J.M., et al., 2011. Numerical study on hydrodynamic behavior of an underwater glider. Proc. 30th Int. Conf. on Ocean, Offshore and Arctic Engineering, p.521-526.

[20]

[21]Phoemsapthawee, S., Le Boulluec, M., Laurens, J.M., et al., 2013. A potential flow based flight simulator for an underwater glider. J. Mar. Sci. Appl., 12(1):112-121.

[22]

[23]Rentschler, M.E., Hover, F.S., Chryssostomidis, C., 2006. System identification of open-loop maneuvers leads to improved AUV flight performance. IEEE J. Ocean. Eng., 31(1):200-208.

[24]Rudnick, D.L., Davis, R.E., Eriksen, C.C., et al., 2004. Underwater gliders for ocean research. Mar. Technol. Soc. J., 38(2):73-84.

[25]Schmid, C., Biegler, L.T., 1994. Quadratic programming methods for reduced Hessian SQP. Comput. Chem. Eng., 18(9):817-832.

[26]Shi, S.D., 1995. Submarine Maneuverability. National Defense Industry Press, Beijing (in Chinese).

[27]Tiano, A., Sutton, R., Lozowicki, A., et al., 2007. Observer Kalman filter identification of an autonomous underwater vehicle. Contr. Eng. Pract., 15(6):727-739.

[28]

[29]Wang, S.X., Sun, X.J., Wang, Y.H., et al., 2011. Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider. China Ocean Eng., 25(1):97-112.

[30]Xiao, Z.R., 2014. Calculation of submarine’s inertial hydrodynamics coefficient. J. Nav. Univ. Eng., 26(5):44-47 (in Chinese).

[31]Zhang, F.T., Tan, X.B., 2015. Passivity-based stabilization of underwater gliders with a control surface. J. Dynam. Syst. Meas. Contr., 137(6):1-13.

[32]

[33]Zhang, F.T., Zhang, F.M., Tan, X.B., 2014. Tail-enabled spiraling maneuver for gliding robotic fish. J. Dynam. Syst. Meas. Contr., 136(4):1-8.

[34]

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE