CLC number: TN433
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-12-07
Cited: 0
Clicked: 4039
Lianming Li, Long He, Xu Wu, Xiaokang Niu, Chao Wan, Lin Kang, Xiaoqing Jia, Labao Zhang, Qingyuan Zhao, Xuecou Tu. Wideband cryogenic amplifier for a superconducting nanowire single-photon detector[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(12): 1666-1676.
@article{title="Wideband cryogenic amplifier for a superconducting nanowire single-photon detector",
author="Lianming Li, Long He, Xu Wu, Xiaokang Niu, Chao Wan, Lin Kang, Xiaoqing Jia, Labao Zhang, Qingyuan Zhao, Xuecou Tu",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="12",
pages="1666-1676",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2100525"
}
%0 Journal Article
%T Wideband cryogenic amplifier for a superconducting nanowire single-photon detector
%A Lianming Li
%A Long He
%A Xu Wu
%A Xiaokang Niu
%A Chao Wan
%A Lin Kang
%A Xiaoqing Jia
%A Labao Zhang
%A Qingyuan Zhao
%A Xuecou Tu
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 12
%P 1666-1676
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2100525
TY - JOUR
T1 - Wideband cryogenic amplifier for a superconducting nanowire single-photon detector
A1 - Lianming Li
A1 - Long He
A1 - Xu Wu
A1 - Xiaokang Niu
A1 - Chao Wan
A1 - Lin Kang
A1 - Xiaoqing Jia
A1 - Labao Zhang
A1 - Qingyuan Zhao
A1 - Xuecou Tu
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 12
SP - 1666
EP - 1676
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2100525
Abstract: We present a low-power inductorless wideband differential cryogenic amplifier using a 0.13-μm SiGe BiCMOS process for a superconducting nanowire single-photon detector (SNSPD). With a shunt–shunt feedback and capacitive coupling structure, theoretical analysis and simulations were undertaken, highlighting the relationship of the amplifier gain with the tunable design parameters of the circuit. In this way, the design and optimization flexibility can be increased, and a required gain can be achieved even without an accurate cryogenic device model. To realize a flat terminal impedance over the frequency of interest, an RC shunt compensation structure was employed, improving the amplifier’s closed-loop stability and suppressing the amplifier overshoot. The S-parameters and transient performance were measured at room temperature (300 K) and cryogenic temperature (4.2 K). With good input and output matching, the measurement results showed that the amplifier achieved a 21-dB gain with a 3-dB bandwidth of 1.13 GHz at 300 K. At 4.2 K, the gain of the amplifier can be tuned from 15 to 24 dB, achieving a 3-dB bandwidth spanning from 120 kHz to 1.3 GHz and consuming only 3.1 mW. Excluding the chip pads, the amplifier chip core area was only about 0.073 mm2.
[1]Bardin JC, Weinreb S, 2008. Experimental cryogenic modeling and noise of SiGe HBTs. Proc IEEE MTT-S Int Microwave Symp Digest, p.459-462.
[2]Bardin JC, Weinreb S, 2009. A 0.1–5 GHz cryogenic SiGe MMIC LNA. IEEE Microw Wirel Compon Lett, 19(6):407-409.
[3]Bardin JC, Weinreb S, 2010. A DC-4 GHz 270Ω differential SiGe low-noise amplifier for cryogenic applications. Proc 5th European Microwave Integrated Circuits, p.186-189.
[4]Birnbaum K, Charles JR, Farr WH, et al., 2011. Deep-space optical terminals: ground laser receiver. Proc Int Conf on Space Optical Systems and Applications, p.136-141.
[5]Cahall CT, Gauthier DJ, Kim J, 2016. Cryogenic amplifiers for a superconducting nanowire single photon detector system. Proc Conf on Lasers and Electro-Optics, p.1-2.
[6]Cha E, Wadefalk N, Moschetti G, et al., 2020. InP HEMTs for sub-mW cryogenic low-noise amplifiers. IEEE Electron Dev Lett, 41(7):1005-1008.
[7]Chang SW, Bardin JC, 2017. A wideband cryogenic SiGe LNA MMIC with an average noise temperature of 2.8 K from 0.3–3 GHz. Proc IEEE MTT-S Int Microwave Symp, p.157-159.
[8]Debnath B, Das JC, De D, 2019. Nanoscale cryptographic architecture design using quantum-dot cellular automata. Front Inform Technol Electron Eng, 20(11):1578-1586.
[9]He L, Li LM, Niu XK, et al., 2019. A low-power, inductorless wideband cryogenic amplifier for superconducting nanowire single photon detector. IEEE Trans Appl Supercond, 29(6):2200306.
[10]Kitaygorsky J, Slysz W, Shouten R, et al., 2017. Amplitude distributions of dark counts and photon counts in NbN superconducting single-photon detectors integrated with the HEMT readout. Phys C Supercond Appl, 532:33-39.
[11]Korolev AM, Shulga VM, Turutanov OG, 2016. An ultra-low-power multi-octave deep-cooled amplifier for superconducting single-photon detectors. Proc 9th Int Kharkiv Symp on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves, p.1-3.
[12]Liu MM, Krämer J, Hu YP, et al., 2017. Quantum security analysis of a lattice-based oblivious transfer protocol. Front Inform Technol Electron Eng, 18(9):1348-1369.
[13]Marsili F, Verma VB, Stern JA, et al., 2013. Detecting single infrared photons with 93% system efficiency. Nat Photon, 7(3):210-214.
[14]Montazeri S, Wong WT, Coskun AH, et al., 2016. Ultra-low-power cryogenic SiGe low-noise amplifiers: theory and demonstration. IEEE Trans Microw Theory Techn, 64(1):178-187.
[15]Moschetti G, Wadefalk N, Nilsson PÅ, et al., 2012. Cryogenic InAs/AlSb HEMT wideband low-noise IF amplifier for ultra-low-power applications. IEEE Microw Wirel Compon Lett, 22(3):144-146.
[16]Qu SQ, Wang XC, Zhang C, et al., 2019. 6-7 GHz cryogenic low-noise mHEMT-based amplifier for quantum computing. Proc Cross Strait Quad-Regional Radio Science and Wireless Technology Conf, p.1-3.
[17]Ramírez W, Forstén H, Varonen M, et al., 2019. Cryogenic operation of a millimeter-wave SiGe BiCMOS low-noise amplifier. IEEE Microw Wirel Compon Lett, 29(6):403-405.
[18]Russell D, Weinreb S, 2012. Low-power very low-noise cryogenic SiGe IF amplifiers for terahertz mixer receivers. IEEE Trans Microw Theory Techn, 60(6):1641-1648.
[19]Schleeh J, Wadefalk N, Nilsson PÅ, et al., 2013. Cryogenic broadband ultra-low-noise MMIC LNAs for radio astronomy applications. IEEE Trans Microw Theory Techn, 61(2):871-877.
[20]Shiao YSJ, Huang GW, Chiueh TH, 2014. A 4 GHz cryogenic amplifier in 0.18 μm general purpose BiCMOS technology. Proc Asia-Pacific Microwave Conf, p.1181-1183.
[21]SHI Cryogenics Group, 2012. RDK-415D 4K Cryocooler Series. https://www.shicryogenics.com/product/rdk-415d-4k-cryocooler-series/ [Accessed on Nov. 10, 2021].
[22]Tao X, Hao H, Li X, et al., 2020. Characterize the speed of a photon-number-resolving superconducting nanowire detector. IEEE Photon J, 12(4):4501308.
[23]Tarkhov M, Claudon J, Poizat JP, et al., 2008. Ultrafast reset time of superconducting single photon detectors. Appl Phys Lett, 92(24):241112.
[24]Wong WT, Hosseini M, Rücker H, et al., 2020. A 1 mW cryogenic LNA exploiting optimized SiGe HBTs to achieve an average noise temperature of 3.2 K from 4–8 GHz. Proc IEEE/MTT-S Int Microwave Symp, p.181-184.
[25]Yamashita T, Miki S, Qiu W, et al., 2010. Temperature dependent performances of superconducting nanowire single-photon detectors in an ultralow-temperature region. Appl Phys Expr, 3(10):102502.
Open peer comments: Debate/Discuss/Question/Opinion
<1>