Full Text:   <554>

Summary:  <78>

Suppl. Mater.: 

CLC number: TN253

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2024-09-29

Cited: 0

Clicked: 785

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xinying HE

https://orcid.org/0009-0008-2239-1264

Yaoguang MA

https://orcid.org/0000-0002-8091-611X

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2024 Vol.25 No.9 P.1193-1208

http://doi.org/10.1631/FITEE.2300509


Recent progress on the applications of micro/nanofibers in ultrafast optics


Author(s):  Xinying HE, Yuhang LI, Zhuning WANG, Sijie PIAN, Xu LIU, Yaoguang MA

Affiliation(s):  State Key Laboratory for Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Intelligent Optics and Photonics Research Center, Jiaxing Research Institute, ZJU–Hangzhou Global Scientific and Technological Innovation Center, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   mayaoguang@zju.edu.cn

Key Words:  Micro/Nanofibers (MNFs), Nonlinear dynamics, Dispersion, Ultrafast optics


Xinying HE, Yuhang LI, Zhuning WANG, Sijie PIAN, Xu LIU, Yaoguang MA. Recent progress on the applications of micro/nanofibers in ultrafast optics[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(9): 1193-1208.

@article{title="Recent progress on the applications of micro/nanofibers in ultrafast optics",
author="Xinying HE, Yuhang LI, Zhuning WANG, Sijie PIAN, Xu LIU, Yaoguang MA",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="25",
number="9",
pages="1193-1208",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2300509"
}

%0 Journal Article
%T Recent progress on the applications of micro/nanofibers in ultrafast optics
%A Xinying HE
%A Yuhang LI
%A Zhuning WANG
%A Sijie PIAN
%A Xu LIU
%A Yaoguang MA
%J Frontiers of Information Technology & Electronic Engineering
%V 25
%N 9
%P 1193-1208
%@ 2095-9184
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2300509

TY - JOUR
T1 - Recent progress on the applications of micro/nanofibers in ultrafast optics
A1 - Xinying HE
A1 - Yuhang LI
A1 - Zhuning WANG
A1 - Sijie PIAN
A1 - Xu LIU
A1 - Yaoguang MA
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 25
IS - 9
SP - 1193
EP - 1208
%@ 2095-9184
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2300509


Abstract: 
Ultrafast fiber lasers are indispensable components in the field of ultrafast optics, and their continuous performance advancements are driving the progress of this exciting discipline. micro/Nanofibers (MNFs) possess unique properties, such as a large fractional evanescent field, flexible and controllable dispersion, and high nonlinearity, making them highly valuable for generating ultrashort pulses. Particularly, in tasks involving mode-locking and dispersion and nonlinearity management, MNFs provide an excellent platform for investigating intriguing nonlinear dynamics and related phenomena, thereby promoting the advancement of ultrafast fiber lasers. In this paper, we present an introduction to the mode evolution and characteristics of MNFs followed by a comprehensive review of recent advances in using MNFs for ultrafast optics applications including evanescent field modulation and control, dispersion and nonlinear management techniques, and nonlinear dynamical phenomenon exploration. Finally, we discuss the potential application prospects of MNFs in the realm of ultrafast optics.

微纳光纤在超快光学领域的研究进展

何欣莹1,李宇航2,王铸宁1,片思杰1,刘旭1,马耀光1
1浙江大学光电科学与工程学院极端光学技术与仪器全国重点实验室,先进光子学国际研究中心,浙江大学嘉兴研究院智能光学与光子学研究中心,杭州国际科创中心,中国杭州市,310027
2清华大学精密仪器系精密测试技术与仪器全国重点实验室,中国北京市,100084
摘要:超快光纤激光器作为超快光学领域至关重要的组成部分,其性能不断推动超快光学的进展。在产生超短脉冲过程中,微纳光纤凭借其高比例倏逝场、灵活可控的色散和高非线性特性,在饱和吸收锁模以及色散和非线性管理方面发挥了积极作用。在产生超短脉冲方面,具备高非线性系数的微纳光纤已经成为研究非线性动力学现象的理想平台工具之一,并且也反向促进超快光纤激光器技术的发展。本文首先介绍了微纳光纤模式演化及相关特征,然后全面综述微纳光纤在超快光学领域最新研究进展,包括倏逝场调制与控制、色散与非线性管理以及非线性动力学现象,最后讨论了微纳尺度下未来可能应用于超快光学领域的潜在前景。

关键词:微纳光纤;非线性动力学;色散;超快光学

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdul Hadi MAW, Muhammad FD, Mohd Yusoff N, et al., 2022. Noise-like pulse generation with tungsten trioxide/polydimethylsiloxane-clad microfiber saturable absorber. Micro Opt Technol Lett, 64(5):972-977.

[2]Agrawal GP, 2013. Nonlinear Fiber Optics (5th Ed.). Elsevier, Amsterdam, the Netherlands, p.327-328.

[3]Agrawal GP, 2019. Self-imaging in multimode graded-index fibers and its impact on the nonlinear phenomena. Opt Fiber Technol, 50:309-316.

[4]Ahmad H, Ramli R, Ismail NN, et al., 2021. Passively mode locked thulium and thulium/holmium doped fiber lasers using MXene Nb2C coated microfiber. Sci Rep, 11(1):11652.

[5]Ahmad H, Hidayah Mansor N, Aisyah Reduan S, et al., 2022. High power passively mode-locked laser with Sb2Te3 deposited tapered fiber in Er/Yb doped fiber laser. Opt Fiber Technol, 73:103013.

[6]Akimov DA, Schmitt M, Maksimenka R, et al., 2003. Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes. Appl Phys B, 77(2-3):299-305.

[7]Alamgir I, Shamim MHM, Correr W, et al., 2021. Mid-infrared soliton self-frequency shift in chalcogenide glass. Opt Lett, 46(21):5513-5516.

[8]Al-Kadry A, Amraoui ME, Messaddeq Y, et al., 2014. Two octaves mid-infrared supercontinuum generation in As2Se3 microwires. Opt Expr, 22(25):31131-31137.

[9]Billet M, Braud F, Bendahmane A, et al., 2014. Emission of multiple dispersive waves from a single Raman-shifting soliton in an axially-varying optical fiber. Opt Expr, 22(21):25673-25678.

[10]Birks TA, Li YW, 1992. The shape of fiber tapers. J Lightw Technol, 10(4):432-438.

[11]Birks TA, Wadsworth WJ, Russell PSJ, 2000. Supercontinuum generation in tapered fibers. Opt Lett, 25(19):1415-1417.

[12]Bogusławski J, Soboń G, Zybała R, et al., 2019. Towards an optimum saturable absorber for the multi-gigahertz harmonic mode locking of fiber lasers. Photon Res, 7(9):1094-1100.

[13]Brahms C, Travers JC, 2023. Efficient and compact source of tuneable ultrafast deep ultraviolet laser pulses at 50 kHz repetition rate. Opt Lett, 48(1):151-154.

[14]Brambilla G, Xu F, Horak P, et al., 2009. Optical fiber nanowires and microwires: fabrication and applications. Adv Opt Photon, 1(1):107-161.

[15]Cai ZR, Liu M, Hu S, et al., 2017. Graphene-decorated microfiber photonic device for generation of rogue waves in a fiber laser. IEEE J Sel Top Quant Electron, 23(1):20-25.

[16]Cao M, Li HS, Tang M, et al., 2019. Forward stimulated Brillouin scattering in optical nanofibers. J Opt Soc Am B, 36(8):2079-2086.

[17]Cen QQ, Pian S, Liu XH, et al., 2023. Microtaper leaky-mode spectrometer with picometer resolution. eLight, 3(1):9.

[18]Chang KY, Wang RC, Yu HC, et al., 2021. Ultra-broadband supercontinuum covering a spectrum from visible to mid-infrared generated by high-power and ultrashort noise-like pulses. Opt Expr, 29(17):26775-26786.

[19]Chang KY, Chen GY, Yu HC, et al., 2023. Generation of supercontinuum covering 520 nm to 2.25 μm by noise-like laser pulses in an integrated all-fiber system. Opt Commun, 533:129281.

[20]Chen WB, Li TJ, Tong LY, et al., 2023. Assisting the mode-locking of a figure-9 fiber laser by thermal nonlinearity of graphene-decorated microfiber. Opt Expr, 31(2):2902-2910.

[21]Chen Z, Ma S, Dutta NK, 2010. An efficient method for supercontinuum generation in dispersion-tailored lead-silicate fiber taper. Opt Commun, 283(15):3076-3080.

[22]Du J, Zhang M, Guo Z, et al., 2017. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers. Sci Rep, 7:42357.

[23]Duan LN, Wang YG, Xu CW, et al., 2015. Passively harmonic mode-locked fiber laser with a high signal-to-noise ratio via evanescent-light deposition of bismuth telluride (Bi2Te3) topological insulator based saturable absorber. IEEE Photon J, 7(2):1500807.

[24]Eftekhar MA, Sanjabi-Eznaveh Z, Lopez-Aviles HE, et al., 2019. Accelerated nonlinear interactions in graded-index multimode fibers. Nat Commun, 10(1):1638.

[25]Fang Y, Wu GZ, Wen XK, et al., 2022. Predicting certain vector optical solitons via the conservation-law deep-learning method. Opt Laser Technol, 155:108428.

[26]Foster MA, Moll KD, Gaeta AL, 2004. Optimal waveguide dimensions for nonlinear interactions. Opt Expr, 12(13):2880-2887.

[27]Foster MA, Dudley JM, Kibler B, et al., 2005. Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation. Appl Phys B, 81(2-3):363-367.

[28]Graini L, Saouchi K, 2022. All-optical 2R regenerator based on similariton-induced spectral broadening. Opt Eng, 61(2):026109.

[29]Grelu P, Akhmediev N, 2012. Dissipative solitons for mode-locked lasers. Nat Photon, 6(2):84-92.

[30]Grubsky V, Feinberg J, 2007. Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber. Opt Commun, 274(2):447-450.

[31]Grubsky V, Savchenko A, 2005. Glass micro-fibers for efficient third harmonic generation. Opt Expr, 13(18):6798-6806.

[32]Ha CK, Nam KH, Kang MS, 2021. Efficient harmonic generation in an adiabatic multimode submicron tapered optical fiber. Commun Phys, 4(1):173.

[33]He XY, Xu M, Zhang XC, et al., 2016. A tutorial introduction to graphene-microfiber waveguide and its applications. Front Optoelectron, 9(4):535-543.

[34]Heidt AM, Hartung A, Bartelt H, et al., 2010. Deep ultraviolet supercontinuum generation in optical nanofibers by femtosecond pulses at 400-nm wavelength. Proc SPIE 7714, Photonic Crystal Fibers IV, p.771407.

[35]Horowitz M, Barad Y, Silberberg Y, 1997. Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser. Opt Lett, 22(11):799-801.

[36]Huang L, Zhang YS, Cui YD, et al., 2020. Microfiber-assisted gigahertz harmonic mode-locking in ultrafast fiber laser. Opt Lett, 45(17):4678-4681.

[37]Huang L, Zhang YS, Cui YD, 2021. Optomechanical-organized multipulse dynamics in ultrafast fiber laser. Chin Phys B, 30(11):114203.

[38]Huang QQ, Dai LL, Rozhin A, et al., 2021. Nonlinearity managed passively harmonic mode-locked Er-doped fiber laser based on carbon nanotube film. Opt Lett, 46(11):2638-2641.

[39]Jeong Y, Vazquez-Zuniga LA, Lee S, et al., 2014. On the formation of noise-like pulses in fiber ring cavity configurations. Opt Fiber Technol, 20(6):575-592.

[40]Jiang XJ, Lee T, He J, et al., 2017. Fundamental-mode third harmonic generation in microfibers by pulse-induced quasi-phase matching. Opt Expr, 25(19):22626-22639.

[41]Jiang XJ, Zhang DD, Lee T, et al., 2018. Optimized microfiber-based third-harmonic generation with adaptive control of phase mismatch. Opt Lett, 43(12):2728-2731.

[42]Jiang XT, Wang DS, Fan QR, et al., 2022. Physics-informed neural network for nonlinear dynamics in fiber optics. Laser Photon Rev, 16(9):2100483.

[43]Kalaycıoğlu H, Elahi P, Akçaalan Ö, et al., 2018. High-repetition-rate ultrafast fiber lasers for material processing. IEEE J Sel Top Quant Electron, 24(3):1-12.

[44]Kang JU, 2000. Broadband quasi-stationary pulses in mode-locked fiber ring laser. Opt Commun, 182(4-6):433-436.

[45]Kang MS, Brenn A, Wiederhecker GS, et al., 2008. Optical excitation and characterization of gigahertz acoustic resonances in optical fiber tapers. Appl Phys Lett, 93(13):13110.

[46]Keller U, 2003. Recent developments in compact ultrafast lasers. Nature, 424(6950):831-838.

[47]Khudus MIMA, Lee T, De Lucia F, et al., 2016. All-fiber fourth and fifth harmonic generation from a single source. Opt Expr, 24(19):21777-21793.

[48]Krupa K, Tonello A, Barthélémy A, et al., 2019. Multimode nonlinear fiber optics, a spatiotemporal avenue. APL Photon, 4(11):110901.

[49]Li AZ, Li WH, Zhang M, et al., 2019. Tm3+-Ho3+ codoped tellurite glass microsphere laser in the 1.47 μm wavelength region. Opt Lett, 44(3):511-513.

[50]Li W, Chen BG, Meng C, et al., 2014. Ultrafast all-optical graphene modulator. Nano Lett, 14(2):955-959.

[51]Li Y, Sun QZ, Xu ZL, et al., 2016. A single longitudinal mode fiber ring laser based on cascaded microfiber knots filter. IEEE Photon Technol Lett, 28(20):2172-2175.

[52]Li YH, Wang LZ, Kang Y, et al., 2018. Microfiber-enabled dissipative soliton fiber laser at 2 μm. Opt Lett, 43(24):6105-6108.

[53]Li YH, Wang LZ, Li LJ, et al., 2019. Optical microfiber-based ultrafast fiber lasers. Appl Phys B Lasers Opt, 125(10):192.

[54]Li YH, Kang Y, Guo X, et al., 2020. Simultaneous generation of ultrabroadband noise-like pulses and intracavity third harmonic at 2 µm. Opt Lett, 45(6):1583-1586.

[55]Li YP, Xu ZL, Tan SJ, et al., 2019. Recent advances in microfiber sensors for highly sensitive biochemical detection. J Phys D Appl Phys, 52(49):493002.

[56]Lidiya AE, Raja RVJ, Srinivasan B, 2022. Generation of high power ultrashort pulses in tapered Yb-doped PCF through self-similar compression. IEEE J Quant Electron, 58(5):1-8.

[57]Liu M, Zheng XW, Qi YL, et al., 2014. Microfiber-based few-layer MoS2 saturable absorber for 2.5 GHz passively harmonic mode-locked fiber laser. Opt Expr, 22(19):22841-22846.

[58]Liu M, Luo AP, Zheng XW, et al., 2015. Microfiber-based highly nonlinear topological insulator photonic device for the formation of versatile multi-soliton patterns in a fiber laser. J Lightw Technol, 33(10):2056-2061.

[59]Liu M, Wei ZW, Luo AP, et al., 2020. Recent progress on applications of 2D material-decorated microfiber photonic devices in pulse shaping and all-optical signal processing. Nanophotonics, 9(9):2641-2671.

[60]Liu XM, Pang M, 2019. Revealing the buildup dynamics of harmonic mode-locking states in ultrafast lasers. Laser Photon Rev, 13(9):1800333.

[61]Liu XM, Yang HR, Cui YD, et al., 2016. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers. Sci Rep, 6:26024.

[62]Lou JY, Wang YP, Tong LM, 2014. Microfiber optical sensors: a review. Sensors, 14(4):5823-5844.

[63]Luo X, Tang YT, Dong FL, et al., 2022. All-fiber mid-infrared supercontinuum generation pumped by ultra-low repetition rate noise-like pulse mode-locked fiber laser. J Lightw Technol, 40(14):4855-4862.

[64]Luo ZC, Liu M, Luo AP, et al., 2018. Two-dimensional materials-decorated microfiber devices for pulse generation and shaping in fiber lasers. Chin Phys B, 27(9):094215.

[65]Mondal P, Mishra V, Varshney SK, 2020. Nonlinear interactions in multimode optical fibers. Opt Fiber Technol, 54:102041.

[66]Nazemosadat E, Mafi A, 2013. Nonlinear multimodal interference and saturable absorption using a short graded-index multimode optical fiber. J Opt Soc Am B, 30(5):1357-1367.

[67]North T, Rochette M, 2013. Raman-induced noiselike pulses in a highly nonlinear and dispersive all-fiber ring laser. Opt Lett, 38(6):890-892.

[68]Ranka JK, Windeler RS, Stentz AJ, 2000. Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt Lett, 25(1):25-27.

[69]Saini TS, Nguyen HPT, Luo X, et al., 2019. Broadband high-power mid-IR supercontinuum generation in tapered chalcogenide step-index optical fiber. OSA Contin, 2(5):1652-1666.

[70]Schröder J, Vo TD, Eggleton BJ, 2009. Repetition-rate-selective, wavelength-tunable mode-locked laser at up to 640 GHz. Opt Lett, 34(24):3902-3904.

[71]Shan LY, Pauliat G, Vienne G, et al., 2013. Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibers. Appl Phys Lett, 102(20):201110.

[72]Shi KB, 2022. New soliton dynamics revealed in the normal dispersion region. Light Sci Appl, 11(1):67.

[73]Song DH, Yin K, Zhang JH, et al., 2021. A compact ultrafast GHz mode-locked fiber laser for optical sub-sampling. Proc SPIE 12057, 12th Int Conf on Information Optics and Photonics, Article 120571A.

[74]Song YF, Shi XJ, Wu CF, et al., 2019. Recent progress of study on optical solitons in fiber lasers. Appl Phys Rev, 6(2):021313.

[75]Spillane SM, Pati GS, Salit K, et al., 2008. Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor. Phys Rev Lett, 100(23):233602.

[76]Stark SP, Travers JC, Russell PSJ, 2012. Extreme supercontinuum generation to the deep UV. Opt Lett, 37(5):770-772.

[77]Talataisong W, Ismaeel R, Brambilla G, 2018. A review of microfiber-based temperature sensors. Sensors, 18(2):461.

[78]Tang DY, Zhao LM, Zhao B, 2005. Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser. Opt Expr, 13(7):2289-2294.

[79]Tong LM, Lou JY, Mazur E, 2004. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Opt Expr, 12(6):1025-1035.

[80]Walmsley I, Waxer L, Dorrer C, 2001. The role of dispersion in ultrafast optics. Rev Sci Instrum, 72(1):1-29.

[81]Wang LZ, Xu PZ, Li YH, et al., 2018. Femtosecond mode-locked fiber laser at 1 μm via optical microfiber dispersion management. Sci Rep, 8(1):4732.

[82]Wang LZ, Li LJ, Tong LM, 2019. Optical microfibers and their applications in mode-locked fiber lasers. Acta Opt Sin, 39(1):0126011 (in Chinese).

[83]Wang LZ, Li JL, Cui YD, et al., 2020. Graphene/α-In2Se3 heterostructure for ultrafast nonlinear optical applications. Opt Mater Expr, 10(11):2723-2729.

[84]Wang RY, Jin L, Wang JZ, et al., 2022. Harmonic mode-locked fiber laser based on microfiber-assisted nonlinear multimode interference. Chin Opt Lett, 20(1):010601.

[85]Wang TQ, Li DD, Ren ZY, et al., 2022. Ultra-high harmonic mode-locking with a micro-fiber knot resonator and Lyot filter. Opt Expr, 30(9):14770-14781.

[86]Wang YD, Gan XT, Zhao CY, et al., 2016. All-optical control of microfiber resonator by graphene’s photothermal effect. Appl Phys Lett, 108(17):171905.

[87]Wang YY, Dai SX, Peng XF, et al., 2018. Mid-infrared supercontinuum generation spanning from 1.9 to 5.7 μm in a chalcogenide fiber taper with ultra-high NA. Infr Phys Technol, 88:102-105.

[88]Wang ZH, Wang Z, Liu YG, et al., 2018. Noise-like pulses generated from a passively mode-locked fiber laser with a WS2 saturable absorber on microfiber. Laser Phys Lett, 15(8):085103.

[89]Wang ZH, Li CY, Ye JW, et al., 2019. Generation of harmonic mode-locking of bound solitons in the ultrafast fiber laser with Sb2Te3 saturable absorber on microfiber. Laser Phys Lett, 16(2):025103.

[90]Woodward RI, 2018. Dispersion engineering of mode-locked fibre lasers. J Opt, 20(3):033002.

[91]Wu JW, Liu GX, Luo ZC, et al., 2022. Wavelength-tunable Q-switched mode-locked multimode fiber laser. Proc Photonics & Electromagnetics Research Symp, p.540-543.

[92]Yang G, Liu YG, Wang Z, et al., 2016. Broadband wavelength tunable mode-locked thulium-doped fiber laser operating in the 2 μm region by using a graphene saturable absorber on microfiber. Laser Phys Lett, 13(6):065105.

[93]Yang PL, Teng H, Fang SB, et al., 2018. 65-fs Yb-doped all-fiber laser using tapered fiber for nonlinearity and dispersion management. Opt Lett, 43(8):1730-1733.

[94]Yeom DI, Mägi EC, Lamont MRE, et al., 2008. Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. Opt Lett, 33(7):660-662.

[95]Yoshino F, 2008. Micromachining with a high repetition rate femtosecond fiber laser. J Laser Micro/Nanoeng, 3(3):157-162.

[96]Zaytsev A, Lin CH, You YJ, et al., 2013. Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers. Opt Expr, 21(13):16056-16062.

[97]Zhang H, Virally S, Bao QL, et al., 2012. Z-scan measurement of the nonlinear refractive index of graphene. Opt Lett, 37(11):1856-1858.

[98]Zhang R, Zhang XP, Meiser D, et al., 2004. Mode and group velocity dispersion evolution in the tapered region of a single-mode tapered fiber. Opt Expr, 12(24):5840-5849.

[99]Zhang X, Ren XM, Xu YZ, et al., 2007. Ultraflat supercontinuum generation in a dispersion-flattened microstructure fiber. Micro Opt Technol Lett, 49(5):1062-1064.

[100]Zhang X, Hu HY, Li WB, et al., 2016. Supercontinuum generation in dispersion-varying microstructured optical fibers. Proc SPIE 9834, Laser Technology for Defense and Security XII, Article 98340F.

[101]Zhang XL, Belal M, Chen GY, et al., 2012. Compact optical microfiber phase modulator. Opt Lett, 37(3):320-322.

[102]Zhang YC, Yuan JH, Wang KR, et al., 2021. Cascaded-tapered silica photonic crystal fiber for supercontinuum generation. Opt Eng, 59(12):126107.

[103]Zhang ZS, Gan JL, Yang T, et al., 2015. All-fiber mode-locked laser based on microfiber polarizer. Opt Lett, 40(5):784-787.

[104]Zhao ZH, Jin L, Set SY, et al., 2022. Broadband similariton generation in a mode-locked Yb-doped fiber laser. Opt Lett, 47(9):2238-2241.

[105]Zhou J, Li YH, Ma YG, et al., 2021. Broadband noise-like pulse generation at 1 µm via dispersion and nonlinearity management. Opt Lett, 46(7):1570-1573.

[106]Zhou XB, Qiu MW, Qian YH, et al., 2021. Microfiber-based polarization beam splitter and its application for passively mode-locked all-fiber laser. IEEE J Sel Top Quant Electron, 27(2):1-6.

[107]Zhou XF, Chen ZL, Wang YB, et al., 2022. Theoretical analysis of mode evolution in an adiabatically tapered multimode fiber by coupled local mode theory. Opt Fiber Technol, 70:102898.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE