Full Text:   <244>

Suppl. Mater.: 

CLC number: TP301

On-line Access: 2025-11-17

Received: 2025-01-25

Revision Accepted: 2025-11-18

Crosschecked: 2025-07-07

Cited: 0

Clicked: 587

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Qingmei CAO

https://orcid.org/0000-0002-1661-9225

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.10 P.1942-1953

http://doi.org/10.1631/FITEE.2500058


An improved sliding mode control based on fuzzy logic for quadrotor unmanned aerial vehicles under unmatched uncertainty


Author(s):  Qingmei CAO, Ruiwen XIANG, Yonghong TAN, Weiqing SUN, Jiawei CHI, Xiaodong ZHOU, Lei YAO

Affiliation(s):  School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; more

Corresponding email(s):   cqm@usst.edu.cn, tany@shnu.edu.cn, sunwq@usst.edu.cn, zhouxdshpc@163.com

Key Words:  Sliding mode control, Fuzzy logic theory, Underactuated system, Unmanned aerial vehicle, Self-learning strategy


Qingmei CAO, Ruiwen XIANG, Yonghong TAN, Weiqing SUN, Jiawei CHI, Xiaodong ZHOU, Lei YAO. An improved sliding mode control based on fuzzy logic for quadrotor unmanned aerial vehicles under unmatched uncertainty[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(10): 1942-1953.

@article{title="An improved sliding mode control based on fuzzy logic for quadrotor unmanned aerial vehicles under unmatched uncertainty",
author="Qingmei CAO, Ruiwen XIANG, Yonghong TAN, Weiqing SUN, Jiawei CHI, Xiaodong ZHOU, Lei YAO",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="10",
pages="1942-1953",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500058"
}

%0 Journal Article
%T An improved sliding mode control based on fuzzy logic for quadrotor unmanned aerial vehicles under unmatched uncertainty
%A Qingmei CAO
%A Ruiwen XIANG
%A Yonghong TAN
%A Weiqing SUN
%A Jiawei CHI
%A Xiaodong ZHOU
%A Lei YAO
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 10
%P 1942-1953
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500058

TY - JOUR
T1 - An improved sliding mode control based on fuzzy logic for quadrotor unmanned aerial vehicles under unmatched uncertainty
A1 - Qingmei CAO
A1 - Ruiwen XIANG
A1 - Yonghong TAN
A1 - Weiqing SUN
A1 - Jiawei CHI
A1 - Xiaodong ZHOU
A1 - Lei YAO
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 10
SP - 1942
EP - 1953
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500058


Abstract: 
A novel fuzzy sliding mode control (FSMC) strategy is proposed to enhance the robustness and stability of position control for underactuated quadrotor unmanned aerial vehicles (UAVs) in the presence of external disturbances and model uncertainties. To realize the adaptive ability and robustness of the system in complex dynamic environments, an intelligent two-dimensional fuzzy controller is designed based on traditional sliding mode control (SMC) to adjust SMC parameters in real time, thereby adapting to the variable structure parameters of the system. First, based on the designed filter variables regarding errors, traditional SMC is used to reduce tracking errors. Then, the fuzzy logic module (FLM) combined with SMC, i.e., the self-learning module (FLM+SMC), is developed based on the filter variables and their rate of change to adjust the two parameters of the above SMC. Subsequently, the output signals of the FLM are fed back into the SMC module, and then a closed-loop tuning system using FSMC is developed for the UAVs. Moreover, the stability of the FSMC is rigorously verified using the Lyapunov theory. Finally, comprehensive simulations demonstrate that the designed FSMC not only offers accurate trajectory precision but also has robustness and disturbance rejection, and comparative simulations using SMC and adaptive radial basis function neural network control (RBFNNC) are used to validate the result.

基于模糊逻辑改进的四旋翼无人机滑模控制方法及其在非匹配不确定性条件下的应用

曹庆梅1,项瑞雯1,谭永红2,孙伟卿1,池佳威1,周晓东3,4,姚磊1
1上海理工大学机械工程学院,中国上海市,200093
2上海师范大学机电工程学院,中国上海市,200234
3中国人民公安大学信息与网络安全学院,中国北京市,100038
4上海公安学院信息化与网络安全系,中国上海市,200137
摘要:本文提出一种新型模糊滑模控制(FSMC)策略,旨在增强欠驱动四旋翼无人机(UAV)在存在外部干扰和模型不确定性条件下位置控制的鲁棒性与稳定性。为实现系统在复杂动态环境中的自适应能力与鲁棒性,基于传统滑模控制(SMC)设计智能二维模糊控制器,实时调整SMC参数以适应系统可变结构参数。首先基于误差滤波变量设计,采用传统SMC抑制跟踪误差。随后基于滤波变量及其变化率,开发融合模糊逻辑模块(FLM)与SMC的自学习模块(FLM+SMC)来调节上述SMC的两个参数。继而将FLM输出信号反馈至SMC模块,最终构建基于FSMC的UAV闭环调谐系统。此外,通过李亚普诺夫理论对FSMC的稳定性进行了严格验证。最终综合仿真表明,所设计的FSMC不仅能实现精确的轨迹精度,还具备鲁棒性和抗干扰能力;与SMC及自适应径向基函数神经网络控制(RBFNNC)的对比仿真验证了该结果。

关键词:滑模控制;模糊逻辑理论;欠驱动系统;无人机;自学习策略

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Amer A, Mehndiratta M, le Fevre Sejersen J, et al., 2023. Visual tracking nonlinear model predictive control method for autonomous wind turbine inspection. 21st Int Conf on Advanced Robotics, p.431-438.

[2]Bodmann BG, Singh PK, 2011. Burst erasures and the mean-square error for cyclic Parseval frames. IEEE Trans Inform Theory, 57(7):4622-4635.

[3]Chen FY, Jiang RQ, Zhang KK, et al., 2016. Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV. IEEE Trans Ind Electron, 63(8):5044-5056.

[4]Chen PY, Zhang GB, Guan T, et al., 2021. The motion controller based on neural network S-plane model for fixed-wing UAVs. IEEE Access, 9:93927-93936.

[5]Du HB, Zhu WW, Wen GH, et al., 2019. Distributed formation control of multiple quadrotor aircraft based on nonsmooth consensus algorithms. IEEE Trans Cybern, 49(1):342-353.

[6]Ermeydan A, Kiyak E, 2017. Fault tolerant control against actuator faults based on enhanced PID controller for a quadrotor. Aircr Eng Aerosp Technol, 89(3):468-476.

[7]Guo XT, Hou SJ, Niu PJ, et al., 2022. A review of control methods for quadrotor UAVs. 5th Int Conf on Electronics and Electrical Engineering Technology, p.132-138.

[8]Jiang M, 2021. Application of fuzzy PID control in UAV control system. 3rd Int Conf on Inventive Research in Computing Applications, p.197-200.

[9]Li YJ, Huynh DV, Nguyen VL, et al., 2024. Multiagent UAV-aided URLLC mobile edge computing systems: a joint communication and computation optimization approach. IEEE Syst J, 18(4):1828-1838.

[10]Mendoza AMER, Yu W, 2023. Fuzzy adaptive control law for trajectory tracking based on a fuzzy adaptive neural PID controller of a multi-rotor unmanned aerial vehicle. Int J Contr Autom Syst, 21(2):658-670.

[11]Nair AP, Selvaganesan N, Lalithambika VR, 2016. Lyapunov based PD/PID in model reference adaptive control for satellite launch vehicle systems. Aerosp Sci Technol, 51:70-77.

[12]Nguyen NP, Mung NX, Thanh HLNN, et al., 2021. Adaptive sliding mode control for attitude and altitude system of a quadcopter UAV via neural network. IEEE Access, 9:40076-40085.

[13]Nodland D, Zargarzadeh H, Jagannathan S, 2013. Neural network-based optimal adaptive output feedback control of a helicopter UAV. IEEE Trans Neur Netw Learn Syst, 24(7):1061-1073.

[14]Pounds PEI, Bersak DR, Dollar AM, 2012. Stability of small-scale UAV helicopters and quadrotors with added payload mass under PID control. Auton Robots, 33(1-2):129-142.

[15]Rahbari D, Ahmed F, Jenihhin M, et al., 2024. Reliability-critical computation offloading in UAV swarms. IEEE Syst J, 18(4):1871-1882.

[16]Rao JJ, Li B, Zhang Z, et al., 2022. Position control of quadrotor UAV based on cascade fuzzy neural network. Energies, 15(5):1763.

[17]Santoso F, Garratt MA, Anavatti SG, 2021. Hybrid PD-fuzzy and PD controllers for trajectory tracking of a quadrotor unmanned aerial vehicle: autopilot designs and real-time flight tests. IEEE Trans Syst Man Cybern Syst, 51(3):1817-1829.

[18]Shen SY, Xu JF, 2021. Adaptive neural network-based active disturbance rejection flight control of an unmanned helicopter. Aerosp Sci Technol, 119:107062-107073.

[19]Song YD, He L, Zhang D, et al., 2019. Neuroadaptive fault-tolerant control of quadrotor UAVs: a more affordable solution. IEEE Trans Neur Netw Learn Syst, 30(7):1975-1983.

[20]Wang F, He S, Zhou C, et al., 2024. Distributed practical finite-time formation control of quadrotor UAVs based on finite-time event-triggered disturbance observer. IEEE Syst J, 18(1):355-366.

[21]Wang T, Xie WF, Zhang YM, 2014. Sliding mode reconfigurable control using information on the control effectiveness of actuators. J Aerosp Eng, 27(3):587-596.

[22]Yang CY, Shen LP, Zhou LN, 2018. Fuzzy sliding mode control for permanent magnet synchronous motors. 5th Int Conf on Information, Cybernetics, and Computational Social Systems, p.331-336.

[23]Yang L, Wu LG, Lv YY, et al., 2023. Combined MPC and dynamic neural network-based UAVs trajectory tracking control. IEEE Access, 11:145763-145771.

[24]Yu L, He G, Wang XK, et al., 2022. Robust fixed-time sliding mode attitude control of tilt trirotor UAV in helicopter mode. IEEE Trans Ind Electron, 69(10):10322-10332.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE