CLC number: O44; O48
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 2
Clicked: 5808
Chellachamy MANOHARAN, Kasinathan VEERAMUTHU, Ramdoss VENKATACHALAPATHY, Ramasamy ILANGO. Studies on rock magnetic and paleointensity of some archaeological artifacts from Tamilnadu, India[J]. Journal of Zhejiang University Science A, 2008, 9(7): 988-993.
@article{title="Studies on rock magnetic and paleointensity of some archaeological artifacts from Tamilnadu, India",
author="Chellachamy MANOHARAN, Kasinathan VEERAMUTHU, Ramdoss VENKATACHALAPATHY, Ramasamy ILANGO",
journal="Journal of Zhejiang University Science A",
volume="9",
number="7",
pages="988-993",
year="2008",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A072225"
}
%0 Journal Article
%T Studies on rock magnetic and paleointensity of some archaeological artifacts from Tamilnadu, India
%A Chellachamy MANOHARAN
%A Kasinathan VEERAMUTHU
%A Ramdoss VENKATACHALAPATHY
%A Ramasamy ILANGO
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 7
%P 988-993
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A072225
TY - JOUR
T1 - Studies on rock magnetic and paleointensity of some archaeological artifacts from Tamilnadu, India
A1 - Chellachamy MANOHARAN
A1 - Kasinathan VEERAMUTHU
A1 - Ramdoss VENKATACHALAPATHY
A1 - Ramasamy ILANGO
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 7
SP - 988
EP - 993
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A072225
Abstract: This study investigates the magnetic mineralogy and paleointensity values of a collection of archaeological artifacts (pottery). The actual magnetic carriers and their domain states present in the archaeological pottery were obtained using the low field susceptibility, thermomagnetic curves and acquisition of isothermal remanence. The magnetic mineralogy of all the samples was dominated by ferrimagnetic mineral (magnetite/magnetite with low titanium content), which was suitable for paleointensity measurements. The geomagnetic paleointensity value obtained by subjecting them to modified Thellier and Thellier method, is found to be (48.81±0.15) μT.
[1] Abrahamsen, N., 1996. An Archaeomagnetic Master Curve for Denmark 0-2000 AD. and the Possible Dating Accuracy. Proceedings of the Sixth Nordic Conference, on the Application of Scientific Methods in Archaeology 1993. Esberg Museum, Denmark, p.261-271.
[2] Alva-Valdivia, L.M., Rivas, M.L., Goguitchaichvili, A., Urrutia-Fucugauchi, J., Gonzalez, J.A., Morales, J., Gomez, S., 2003a. Rock-magnetic and oxide microscopic studies of the EI Laco iron ore deposits, Chilean Andes, and implications for magnetic anomaly modeling. International Geophysical Review, 45:533-547.
[3] Alva-Valdivia, L.M., Goguitchaichvili, A., Urrutia-Fucugauchi J., 2003b. Petromagnetic properties in the Naica mining district, Chihuahua, Mexico: searching for source of mineralization. Earth Planets Space, 55:19-31.
[4] Atkinson, D., King, J.A., 2005. Fine particle magnetic mineralogy of archaeological ceramics. Journal of Physics Conference Series, 17:145-149.
[5] Bloemendal, J., King, J.W., Hall, F.R., Doh, S.H., 1992. Rock magnetism of Late Neogene and Pleistocene deep-sea sediments. Relationship to sediment source, diagenetic processes and sediment lithology. Journal of Geophysical Research, 97(b4):4361-4375.
[6] Casas, L., Linford, P., Shaw, J., 2007. Archaeomagnetic dating the Dogmens field park brick kiln (Southern England). Journal of Archaeological Science, 34(2):205-213.
[7] Coe, R.S., 1976. The determination of paleointensity of the Earth’s magnetic field with emphasis on mechanisms which could cause non-ideal behavior in Thellier’s method. Journal of Geomagnetism and Geoelectricity, 25:415-435.
[8] Dearing, J., Dann, R., Hay, K., Lees, J., Loveland, P., Maher, B., O’Grady, K., 1996a. Frequency-dependent susceptibility measurements of environmental materials. Geophysical Journal International, 124(1):228-240.
[9] Dearing, J., Hay, K., Baban, S., Huddleston, A., Wellington, E., Loveland, P., 1996b. Magnetic susceptibility of soil: an evaluation of conflicting theories using a national data set. Geophysical Journal International, 127(3):728-734.
[10] Dearing, J., Bird, P., Dann, R., Benjamin, S., 1997. Secondary ferrimagnetic minerals in Welsh soils: a comparison of mineral magnetic detection methods and implications for mineral formation. Geophysical Journal International, 130(3):727-736.
[11] Dunlop, D.J., Özdemir, Ö., 1997. Rock Magnetism: Fundamentals and Frontiers: Cambridge Studies in Magnetism. Cambridge University Press, Cambridge, p.573.
[12] Eyre, J., 1997. Frequency dependence of magnetic susceptibility for populations of single-domain-grains. Geophysical Journal International, 129(1):209-211.
[13] Gómez-Paccard, M., Beamud, E., 2008. Recent achievements in archaeomagnetic dating in the mediaevel Iberian Peninsula: application to Roman and Spanish structures. Journal of Archaeological Science, 35(5):1389-1398.
[14] Herries, A.I.R., Kovacheva, M., Kostadinova, M., Shaw, J., 2007. Archaeo-directional and-intensity data from burnt structures at the Thracian site the Halka Bunar (Bulgaria): the effect of magnetic mineralogy, temperature and atmosphere of heating in antiquity. Physics of the Earth and Planetary Interiors, 162(3-4):199-216.
[15] Hunt, C.P., Moskowitz, B.M., Banerjee, S.K., 1995. Magnetic Properties of Rocks and Minerals. In: Ahrens, T.J. (Ed.), Rock Physics and Phase Relations. A Handbook of Physical Constants, AGU Reference Shelf, the American Geophysical Union, p.189-204.
[16] Jordanova, N., Petrovsky, E., Kovacheva, M., Jordanova, D., 2001. Factors determining magnetic enhancement of burnt clay from archaeological sites. Journal of Archaeological Science, 28(11):1137-1148.
[17] Jordanova, N., Kovacheva, M., Kostadinova, M., 2004. Archaeomagnetic investigation and dating of Neolithic archaeological site (Kovachevo) from Bulgaria. Physics of the Earth and Planetary Interiors, 147(2-3):89-102.
[18] Kono, M., Ueno, N., 1977. Paleointensity determination by a modified Thellier method. Physics of the Earth and Planetary Interiors, 13(4):305-314.
[19] Kovacheva, M., Jordanova, N., Karloukovski, V., 1998. Geomagnetic field variations as determined from Bulgarian archaeomagnetic data. Part II: the last 8000 years. Surveys in Geophysics, 19(5):431-460.
[20] Lu, S.G., Bai, S.Q., Cai, J.B., Xu, C., 2005. Magnetic properties and heavy metal contents of automobile emission particulars. Journal of Zhejiang University SCIENCE, 6B(8):731-735.
[21] Maher, B.A., 1988. Magnetic properties of some synthetic sub-micron magnetites. Geophysical Journal International, 94(1):83-96.
[22] McEnore, S.A., Robinson, P., Panish, P.T., 2001. Aeromagnetic anomalies, magnetic petrology, and rock magnetism of hemo-ilmenite- and magnetite rich cumulate rocks from the Sokndal Region, South Rogaland, Norway. American Mineralogist, 86:1447-1468.
[23] Mooney, S.D., Geiss, C., Smith, M.A., 2002. The use of mineral magnetic parameters to characterize archaeological ochres. Journal of Archaeological Science, 30(5):511-523.
[24] Mullins, C., Tite, M., 1973. Magnetic viscosity, quadrature susceptibility and frequency dependence of susceptibility in single domain assemblies of magnetite and maghemite. Journal of Geophysical Research, 78(5):804-809.
[25] Ramaswamy, K., Duraiswamy, D., 1990. Archaeomagnetic Studies on some archaeological sites in Tamilnadu, India. Physics of the Earth and Planetary Interiors, 60(1-4):278-284.
[26] Thellier, E., Thellier, O., 1959. Sur I’intensite du champ magnetique terrestre dans le passe, historique et geologique. Annales de Geophysique, 15:285-376.
[27] Thomson, R., Oldfield, F., 1986. Environmental Magnetism. Allen and Unwin, London.
[28] Tian, L.L., Zhu, R.X., Pan, Y.X., 2002. Rock magnetic properties of Hannuoba Basalts, Zhangbei, China. Chinese Journal of Geophysics, 45(6):872-878.
[29] Worm, H.U., 1998. On the superparamagnetic-stable single domain transition for magnetite, and frequency depends of susceptibility. Geophysical Journal International, 133(1):201-206.
[30] Zhu, R.X., Guo, B., Zong, L., 2000. Gauss-Matuyama polarity transition obtained from a loess section at Weiman, North-Central China. Chinese Journal of Geophysics, 43(5):621-634.
Open peer comments: Debate/Discuss/Question/Opinion
<1>