Full Text:   <3323>

CLC number: R735.2; R378

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2011-08-09

Cited: 4

Clicked: 6598

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2011 Vol.12 No.10 P.820-827

http://doi.org/10.1631/jzus.B1000445


Comparative proteome analysis of Helicobacter pylori clinical strains by two-dimensional gel electrophoresis


Author(s):  Ya-nan Zhang, Shi-gang Ding, Liu-huan Huang, Jing Zhang, Yan-yan Shi, Li-jun Zhong

Affiliation(s):  Department of Laboratory, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100050, China, Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China, Department of Thoracic and Cardiovascular Surgery, Beijing Shi Jing Shan Hospital, Beijing 100043, China, Peking University Health Science Center, Beijing 100091, China

Corresponding email(s):   dingshigang222@163.com

Key Words:  Helicobacter pylori, Proteome, Gastric cancer, Gastritis, Two-dimensional gel electrophoresis


Ya-nan Zhang, Shi-gang Ding, Liu-huan Huang, Jing Zhang, Yan-yan Shi, Li-jun Zhong. Comparative proteome analysis of Helicobacter pylori clinical strains by two-dimensional gel electrophoresis[J]. Journal of Zhejiang University Science B, 2011, 12(10): 820-827.

@article{title="Comparative proteome analysis of Helicobacter pylori clinical strains by two-dimensional gel electrophoresis",
author="Ya-nan Zhang, Shi-gang Ding, Liu-huan Huang, Jing Zhang, Yan-yan Shi, Li-jun Zhong",
journal="Journal of Zhejiang University Science B",
volume="12",
number="10",
pages="820-827",
year="2011",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1000445"
}

%0 Journal Article
%T Comparative proteome analysis of Helicobacter pylori clinical strains by two-dimensional gel electrophoresis
%A Ya-nan Zhang
%A Shi-gang Ding
%A Liu-huan Huang
%A Jing Zhang
%A Yan-yan Shi
%A Li-jun Zhong
%J Journal of Zhejiang University SCIENCE B
%V 12
%N 10
%P 820-827
%@ 1673-1581
%D 2011
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1000445

TY - JOUR
T1 - Comparative proteome analysis of Helicobacter pylori clinical strains by two-dimensional gel electrophoresis
A1 - Ya-nan Zhang
A1 - Shi-gang Ding
A1 - Liu-huan Huang
A1 - Jing Zhang
A1 - Yan-yan Shi
A1 - Li-jun Zhong
J0 - Journal of Zhejiang University Science B
VL - 12
IS - 10
SP - 820
EP - 827
%@ 1673-1581
Y1 - 2011
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1000445


Abstract: 
Objective: To investigate the pathogenic properties of Helicobacter pylori by comparing the proteome map of H. pylori clinical strains. Methods: Two wild-type H. pylori strains, YN8 (isolated from biopsy tissue of a gastric cancer patient) and YN14 (isolated from biopsy tissue of a gastritis and duodenal ulcer patient), were used. Proteomic analysis, using a pH range of 3–10 and 5–8, was performed. The individual proteins were identified by quadrupole time-of-flight (Q-TOF) mass spectrometer and protein database search. Results: Variation in spot patterns directed towards differential protein expression levels was observed between the strains. The gel revealed prominent proteins with several protein “families”. The comparison of protein expressions of the two strains reveals a high variability. Differentially present or absent spots were observed. Nine differentially expressed protein spots identified by Q-TOF included adenosine triphosphate (ATP)-binding protein, disulfide oxidoreductase B (DsbB)-like protein, N utilization substance A (NusA), ATP-dependent protease binding subunit/heat shock protein, hydantoin utilization protein A, seryl-tRNA synthetase, molybdenum ABC transporter ModD, and hypothetical proteins. Conclusions: This study suggests that H. pylori strains express/repress protein variation, not only in terms of the virulence proteins, but also in terms of physiological proteins, when they infect a human host. The difference of protein expression levels between H. pylori strains isolated from gastric cancer and gastritis may be the initiator of inflammation, and result in the different clinical presentation. In this preliminary study, we report seven differential proteins between strains, with molecule weights from approximately 10 kDa to approximately 40 kDa. Further studies are needed to investigate those proteins and their function associated with H. pylori colonization and adaptation to host environment stress.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alm, R.A., Ling, L.S., Moir, D.T., King, B.L., Brown, E.D., Doig, P.C., Smith, D.R., Noonan, B., Guild, B.C., de Jonge, B.L., et al., 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature, 397(6715):176-180.

[2]Backert, S., Kwok, T., Schmid, M., Selbach, M., Moese, S., Peek, R.M.Jr., König, W., Meyer, T.F., Jungblut, P.R., 2005. Subproteomes of soluble and structure-bound Helicobacter pylori proteins analyzed by two-dimensional gel electrophoresis and mass spectrometry. Proteomics, 5(5):1331-1335.

[3]Blaser, M.J., Berg, D.E., 2001. Helicobacter pylori genetic diversity and risk of human disease. J. Clin. Invest., 107(7):767-773.

[4]Blaser, M.J., Perez-Perez, G.I., Kleanthous, H., Cover, T.L., Peek, R.M., Chyou, P.H., Stemmermann, G.N., Nomura, A., 1995. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res., 55(10):2111-2115.

[5]Cohen, S.E., Walker, G.C., 2010. The transcription elongation factor NusA is required for stress-induced mutagenesis in Escherichia coli. Curr. Biol., 20(1):80-85.

[6]Cohen, S.E., Godoy, V.G., Walker, G.C., 2009. Transcriptional modulator NusA interacts with translesion DNA polymerases in Escherichia coli. J. Bacteriol., 191(2):665-672.

[7]Cohen, S.E., Lewis, C.A., Mooney, R.A., Kohanski, M.A., Collins, J.J., Landick, R., Walker, G.C., 2010. Roles for the transcription elongation factor NusA in both DNA repair and damage tolerance pathways in Escherichia coli. PNAS, 107(35):15517-15522.

[8]Enroth, H., Akerlund, T., Sillén, A., Engstrand, L., 2000. Clustering of clinical strains of Helicobacter pylori analyzed by two-dimensional gel electrophoresis. Clin. Diagn. Lab. Immunol., 7(2):301-306.

[9]Friedman, D.B., Hoving, S., Westermeier, R., 2009. Isoelectric focusing and two-dimensional gel electrophoresis. Methods Enzymol., 463:515-540.

[10]Godinic-Mikulcic, V., Jaric, J., Hausman, C.D., Ibba, M., Weygand-Durasevic, I., 2011. An archaeal tRNA-synthetase complex that enhances aminoacylation under extreme conditions. J. Biol. Chem., 286(5):3396-3404.

[11]Govorun, V.M., Moshkovskii, S.A., Tikhonova, O.V., Goufman, E.I., Serebryakova, M.V., Momynaliev, K.T., Lokhov, P.G., Khryapova, E.V., Kudryavtseva, L.V., Smirnova, O.V., et al., 2003. Comparative analysis of proteome maps of Helicobacter pylori clinical isolates. Biochemistry (Mosc), 68(1):42-49.

[12]Graves, P.R., Haystead, T.A., 2002. Molecular biologist’s guide to proteomics. Microbiol. Mol. Biol. Rev., 66(1):39-63.

[13]Ha, K.S., Toulokhonov, I., Vassylyev, D.G., Landick, R., 2010. The NusA N-terminal domain is necessary and sufficient for enhancement of transcriptional pausing via interaction with the RNA exit channel of RNA polymerase. J. Mol. Biol., 401(5):708-725.

[14]Jungblut, P.R., Bumann, D., Haas, G., Zimny-Arndt, U., Holland, P., Lamer, S., Siejak, F., Aebischer, A., Meyer, T.F., 2000. Comparative proteome analysis of Helicobacter pylori. Mol. Microbiol., 36(3):710-725.

[15]Jungblut, P.R., Holzhütter, H.G., Apweiler, R., Schlüter, H., 2008. The speciation of the proteome. Chem. Cent. J., 2(1):16.

[16]Kikuchi, S., 2002. Epidemiology of Helicobacter pylori and gastric cancer. Gastric Cancer, 5(1):6-15.

[17]Lenhard, B., Orellana, O., Ibba, M., Weygand-Durasević, I., 1999. tRNA recognition and evolution of determinants in seryl-tRNA synthesis. Nucl. Acids Res., 27(3):721-729.

[18]Lock, R.A., Cordwell, S.J., Coombs, G.W., Walsh, B.J., Forbes, G.M., 2001. Proteome analysis of Helicobacter pylori: major proteins of type strain NCTC11637. Pathology, 33(3):365-374.

[19]Marshall, B.J., Warren, J.R., 1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet, 323(8390):1311-1315.

[20]Maupin-Furlow, J.A., Rosentel, J.K., Lee, J.H., Deppenmeier, U., Gunsalus, R.P., Shanmugam, K.T., 1995. Genetic analysis of the modABCD (molybdate transport) operon of Escherichia coli. J. Bacteriol., 177(17):4851-4856.

[21]Paliy, O., Gargac, S.M., Cheng, Y., Uversky, V.N., Dunker, A.K., 2008. Protein disorder is positively correlated with gene expression in Escherichia coli. J. Proteome Res., 7(6):2234-2245.

[22]Park, S.M., Park, J., Kim, J.G., Cho, H.D., Cho, J.H., Lee, D.H., Cha, Y.J., 1998. Infection with Helicobacter pylori expressing the cagA gene is not associated with an increased risk of developing peptic ulcer disease in Korean patients. Scand. J. Gastroenterol., 33(9):923-927.

[23]Parkin, D.M., Bray, F., Ferlay, J., Pisani, P., 2005. Global caner statistics 2002. CA Cancer J. Clin., 55(2):74-108.

[24]Prasch, S., Jurk, M., Washburn, R.S., Gottesman, M.E., Wöhrl, B.M., Rösch, P., 2009. RNA-binding specificity of E. coli NusA. Nucl. Acids Res., 37(14):4736-4742.

[25]Raczko, A.M., Bujnicki, J.M., Pawlowski, M., Godlewska, R., Lewandowska, M., Jagusztyn-Krynicka, E.K., 2005. Characterization of new DsbB-like thiol-oxidoreductases of Campylobacter jejuni and Helicobacter pylori and classification of the DsbB family based on phylogenomic, structural and functional criteria. Microbiology, 151(1):219-231.

[26]Salama, N., Guillemin, K., McDaniel, T.K., Sherlock, G., Tompkins, L., Falkow, S., 2000. A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. PNAS, 97(26):14668-14673.

[27]Schmidt, F., Schmid, M., Thiede, B., Pleissner, K.P., Böhme, M., Jungblut, P.R., 2009. Assembling proteomics data as a prerequisite for the analysis of large scale experiments. Chem. Cent. J., 3(1):2.

[28]Taylor, D.E., Eaton, M., Chang, N., Salama, S.M., 1992. Construction of a Helicobacter pylori genome map and demonstration of diversity at the genome level. J. Bacteriol., 174(21):6800-6806.

[29]Tomb, J.F., White, O., Kerlavage, A.R., Clayton, R.A., Sutton, G.G., Fleischman, R.D., Kechum, K.A., Klenk, H.P., Gill, S., Dougherty, B.A., et al., 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature, 388(6642):539-547.

[30]Tumbula, D., Vothknecht, U.C., Kim, H.S., Ibba, M., Min, B., Li, T., Pelaschier, J., Stathopoulos, C., Becker, H., Söll, D., 1999. Archaeal aminoacyl-tRNA synthesis: diversity replaces dogma. Genetics, 152(4):1269-1276.

[31]van Doorn, L.J., Figueiredo, C., Sanna, R., Plaisier, A., Schneeberger, P., de Boer, W., Quint, W., 1998. Clinical relevance of the cagA, vacA, and iceA status of Helicobacter pylori. Gastroenterology, 115(1):58-66.

[32]Vincent, C., Borel, F., Willison, J.C., Leberman, R., Härtlein, M., 1995. Seryl-tRNA synthetase from Escherichia coli: functional evidence for cross-dimer tRNA binding during aminoacylation. Nucl. Acids Res., 23(7):1113-1118.

[33]Wang, G., Angermüller, S., Klipp, W., 1993. Characterization of Rhodobacter capsulatus genes encoding a molybdenum transport system and putative molybdenum-pterin-binding proteins. J. Bacteriol., 175(10):3031-3042.

[34]Yamaoka, Y., Kodama, T., Gutierrez, O., Kim, J.G., Kashima, K., Graham, D.Y., 1999. Relationship between Helicobacter pylori iceA, cagA, and vacA status and clinical outcome: studies in four different countries. J. Clin. Microbiol., 37(7):2274-2279.

[35]Zeng, Y., Roy, H., Patil, P.B., Ibba, M., Chen, S., 2009. Characterization of two seryl-tRNA synthetases in albomycin-producing Streptomyces sp. strain ATCC 700974. Antimicrob. Agents Chemother., 53(11):4619-4627.

[36]Zhang, Y.N., Takeuchi, H., Nishioka, M., Morimoto, N., Kamioka, M., Kumon, Y., Sugiura, T., 2009. Relationship of IL-8 production and the CagA status in AGS cells infected with Helicobacter pylori exposed to low pH and activation transcription factor 3 (ATF3). Microbiol. Res., 164(2):180-190.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE