CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-06-24
Cited: 0
Clicked: 1295
Hongyi LIU, Yuanyuan ZHOU, Peng GUO, Xiongwei ZHENG, Weibin CHEN, Shichao ZHANG, Yu FU, Xu ZHOU, Zheng WAN, Bin ZHAO, Yilin ZHAO. Hemodialysis bilayer bionic blood vessels developed by the mechanical stimulation of hepatitis B viral X (HBX) gene- transfected hepatic stellate cells[J]. Journal of Zhejiang University Science B, 2024, 25(6): 499-512.
@article{title="Hemodialysis bilayer bionic blood vessels developed by the mechanical stimulation of hepatitis B viral X (HBX) gene- transfected hepatic stellate cells",
author="Hongyi LIU, Yuanyuan ZHOU, Peng GUO, Xiongwei ZHENG, Weibin CHEN, Shichao ZHANG, Yu FU, Xu ZHOU, Zheng WAN, Bin ZHAO, Yilin ZHAO",
journal="Journal of Zhejiang University Science B",
volume="25",
number="6",
pages="499-512",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2300479"
}
%0 Journal Article
%T Hemodialysis bilayer bionic blood vessels developed by the mechanical stimulation of hepatitis B viral X (HBX) gene- transfected hepatic stellate cells
%A Hongyi LIU
%A Yuanyuan ZHOU
%A Peng GUO
%A Xiongwei ZHENG
%A Weibin CHEN
%A Shichao ZHANG
%A Yu FU
%A Xu ZHOU
%A Zheng WAN
%A Bin ZHAO
%A Yilin ZHAO
%J Journal of Zhejiang University SCIENCE B
%V 25
%N 6
%P 499-512
%@ 1673-1581
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2300479
TY - JOUR
T1 - Hemodialysis bilayer bionic blood vessels developed by the mechanical stimulation of hepatitis B viral X (HBX) gene- transfected hepatic stellate cells
A1 - Hongyi LIU
A1 - Yuanyuan ZHOU
A1 - Peng GUO
A1 - Xiongwei ZHENG
A1 - Weibin CHEN
A1 - Shichao ZHANG
A1 - Yu FU
A1 - Xu ZHOU
A1 - Zheng WAN
A1 - Bin ZHAO
A1 - Yilin ZHAO
J0 - Journal of Zhejiang University Science B
VL - 25
IS - 6
SP - 499
EP - 512
%@ 1673-1581
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2300479
Abstract: Artificial vascular graft (AVG) fistula is widely used for hemodialysis treatment in patients with renal failure. However, it has poor elasticity and compliance, leading to stenosis and thrombosis. The ideal artificial blood vessel for dialysis should replicate the structure and components of a real artery, which is primarily maintained by collagen in the extracellular matrix (ECM) of arterial cells. Studies have revealed that in hepatitis B virus (HBV)-induced liver fibrosis, hepatic stellate cells (HSCs) become hyperactive and produce excessive ECM fibers. Furthermore, mechanical stimulation can encourage ECM secretion and remodeling of a fiber structure. Based on the above factors, we transfected HSCs with the hepatitis B viral X (HBX) gene for simulating the process of HBV infection. Subsequently, these HBX-HSCs were implanted into a polycaprolactone-polyurethane (PCL-PU) bilayer scaffold in which the inner layer is dense and the outer layer consists of pores, which was mechanically stimulated to promote the secretion of collagen nanofiber from the HBX-HSCs and to facilitate crosslinking with the scaffold. We obtained an ECM-PCL-PU composite bionic blood vessel that could act as access for dialysis after decellularization. Then, the vessel scaffold was implanted into a rabbit’s neck arteriovenous fistula model. It exhibited strong tensile strength and smooth blood flow and formed autologous blood vessels in the rabbit’s body. Our study demonstrates the use of human cells to create biomimetic dialysis blood vessels, providing a novel approach for creating clinical vascular access for dialysis.
[1]BachledaP, KalinovaL, UtikalP, et al., 2012. Infected prosthetic dialysis arteriovenous grafts: a single dialysis center study. Surg Infect (Larchmt), 13(6):366-370.
[2]BakerSC, RohmanG, SouthgateJ, et al., 2009. The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering. Biomaterials, 30(7):1321-1328.
[3]BarberioC, SaezJ, WithersA, et al., 2022. Conducting polymer-ECM scaffolds for human neuronal cell differentiation. Adv Healthc Mater, 11(20):2200941.
[4]BatallerR, BrennerDA, 2005. Liver fibrosis. J Clin Invest, 115(2):209-218.
[5]Batudeligen, HanZQ, ChenHM, et al., 2023. Luteolin alleviates liver fibrosis in rat hepatic stellate cell HSC-T6: a proteomic analysis. Drug Des Devel Ther, 17:1819-1829.
[6]BedossaP, ParadisV, 2003. Liver extracellular matrix in health and disease. J Pathol, 200(4):504-515.
[7]ChenHY, ChenZX, HuangRF, et al., 2014. Hepatitis B virus X protein activates human hepatic stellate cells through upregulating TGFβ1. Genet Mol Res, 13(4):8645-8656.
[8]ChengNC, EstesBT, AwadHA, et al., 2009. Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A, 15(2):231-241.
[9]DaleyWP, YamadaKM, 2013. ECM-modulated cellular dynamics as a driving force for tissue morphogenesis. Curr Opin Genet Dev, 23(4):408-414.
[10]da SilvaWF, SimõesMJ, GutierreRC, et al., 2017. Special dyeing, histochemistry, immunohistochemistry and ultrastructure: a study of mast cells/eosinophilic granules cells (MCs/EGC) from Centropomus parallelus intestine. Fish Shellfish Immunol, 60:502-508.
[11]DengWY, ChenF, ZhouZY, et al., 2021. Hepatitis B virus promotes hepatocellular carcinoma progression synergistically with hepatic stellate cells via facilitating the expression and secretion of ENPP2. Front Mol Biosci, 8:745990.
[12]DoTD, KatsuyoshiJ, CaiHN, et al., 2021. Mechanical properties of isolated primary cilia measured by micro-tensile test and atomic force microscopy. Front Bioeng Biotechnol, 9:753805.
[13]FanWX, DengZX, LiuF, et al., 2012. Spontaneous retroperitoneal hemorrhage after hemodialysis involving anticoagulant agents. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 13(5):408-412.
[14]FarbA, KolodgieFD, HwangJY, et al., 2004. Extracellular matrix changes in stented human coronary arteries. Circulation, 110(8):940-947.
[15]FengGX, LiJ, YangZ, et al., 2017. Hepatitis B virus X protein promotes the development of liver fibrosis and hepatoma through downregulation of miR-30e targeting P4HA2 mRNA. Oncogene, 36(50):6895-6905.
[16]GokalR, 2002. Peritoneal dialysis in the 21st century: an analysis of current problems and future developments. J Am Soc Nephrol, 13(Suppl 1):S104-S115.
[17]HuangJM, TianXX, ZhongYF, et al., 2006. Effects of β1-integrin, fibronectin and laminin on invasive behavior of human gliomas. Chin J Pathol, 35(8):478-482 (in Chinese).
[18]JiroftiN, Mohebbi-KalhoriD, SamimiA, et al., 2018. Small-diameter vascular graft using co-electrospun composite PCL/PU nanofibers. Biomed Mater, 13(5):055014.
[19]KechagiaJZ, IvaskaJ, Roca-CusachsP, 2019. Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol, 20(8):457-473.
[20]KhomichO, IvanovAV, BartoschB, 2019. Metabolic hallmarks of hepatic stellate cells in liver fibrosis. Cells, 9(1):24.
[21]KimSY, ParkJH, LeiteG, et al., 2023. Interleukin-10 knockout mice do not reliably exhibit macroscopic inflammation: a natural history endoscopic surveillance study. Dig Dis Sci, 68(5):1858-1862.
[22]KoyamaY, BrennerDA, 2017. Liver inflammation and fibrosis. J Clin Invest, 127(1):55-64.
[23]LiW, LiuHY, HuangZ, 2011. Construction of luxAB-labelled Pseudomonas aeruginosa. J Hyg Res, 40(1):57-60 (in Chinese).
[24]LuL, ShangXF, LiuB, et al., 2021. Repair of articular cartilage defect using adipose-derived stem cell-loaded scaffold derived from native cartilage extracellular matrix. J Cell Physiol, 236(6):4244-4257.
[25]Martín-VílchezS, Sanz-CamenoP, Rodríguez-MuñozY, et al., 2008. The hepatitis B virus X protein induces paracrine activation of human hepatic stellate cells. Hepatology, 47(6):1872-1883.
[26]MechamRP, 2008. Methods in elastic tissue biology: elastin isolation and purification. Methods, 45(1):32-41.
[27]MongiatM, AndreuzziE, TarticchioG, et al., 2016. Extracellular matrix, a hard player in angiogenesis. Int J Mol Sci, 17(11):1822.
[28]NesrallahGE, MustafaRA, MacraeJ, et al., 2013. Canadian society of nephrology guidelines for the management of patients with ESRD treated with intensive hemodialysis. Am J Kidney Dis, 62(1):187-198.
[29]NiuQY, SuXM, LianLX, et al., 2022. Developing qualitative plasmid DNA reference materials to detect mechanisms of quinolone and fluoroquinolone resistance in foodborne pathogens. Foods, 11(2):154.
[30]ParryDAD, SquireJM, 2005. Fibrous proteins: new structural and functional aspects revealed. Adv Protein Chem, 70:1-10.
[31]PeytonSR, GhajarCM, KhatiwalaCB, et al., 2007. The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function. Cell Biochem Biophys, 47(2):300-320.
[32]RhodesJM, SimonsM, 2007. The extracellular matrix and blood vessel formation: not just a scaffold. J Cell Mol Med, 11(2):176-205.
[33]Rose-JohnS, SchellerJ, SchaperF, 2015. “Family reunion”—a structured view on the composition of the receptor complexes of interleukin-6-type and interleukin-12-type cytokines. Cytokine Growth Factor Rev, 26(5):471-474.
[34]Sánchez-RomeroN, Sainz-ArnalP, Pla-PalacínI, et al., 2019. The role of extracellular matrix on liver stem cell fate: a dynamic relationship in health and disease. Differentiation, 106:49-56.
[35]SatoN, KohiS, HirataK, et al., 2016. Role of hyaluronan in pancreatic cancer biology and therapy: once again in the spotlight. Cancer Sci, 107(5):569-575.
[36]SchaeferL, SchaeferRM, 2010. Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res, 339:237-246.
[37]SchindelinJ, Arganda-CarrerasI, FriseE, et al., 2012. Fiji: an open-source platform for biological-image analysis. Nat Methods, 9(7):676-682.
[38]SehgalPB, WangL, RayanadeR, et al., 1995. Interleukin-6-type cytokines. Ann N Y Acad Sci, 762(1):1-14.
[39]SeoHY, LeeSH, LeeJH, et al., 2019. Clusterin attenuates hepatic fibrosis by inhibiting hepatic stellate cell activation and downregulating the Smad3 signaling pathway. Cells, 8(11):1442.
[40]SteffensenLB, StubbeJ, LindholtJS, et al., 2021. Basement membrane collagen IV deficiency promotes abdominal aortic aneurysm formation. Sci Rep, 11:12903.
[41]StegemannJP, KaszubaSN, RoweSL, 2007. Review: advances in vascular tissue engineering using protein-based biomaterials. Tissue Eng, 13(11):2601-2613.
[42]SternR, 2008. Hyaluronan in cancer biology. Semin Cancer Biol, 18(4):237.
[43]TangXY, ChenDZ, ZhangL, et al., 2022. Application of regional citrate anticoagulation in patients at high risk of bleeding during intermittent hemodialysis: a prospective multicenter randomized controlled trial. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(11):931-942.
[44]ThottappillilN, NairPD, 2015. Scaffolds in vascular regeneration: current status. Vasc Health Risk Manag, 11:79-91.
[45]WangC, GarciaM, LuX, et al., 2006. Three-dimensional mechanical properties of porcine coronary arteries: a validated two-layer model. Am J Physiol Heart Circ Physiol, 291(3):H1200-H1209.
[46]WangJ, ShenT, HuangXB, et al., 2016. Serum hepatitis B virus RNA is encapsidated pregenome RNA that may be associated with persistence of viral infection and rebound. J Hepatol, 65(4):700-710.
[47]WangJHC, ThampattyBP, 2006. An introductory review of cell mechanobiology. Biomech Model Mechanobiol, 5:1-16.
[48]WangJL, CuiWG, YeJH, et al., 2012. A cellular delivery system fabricated with autologous BMSCs and collagen scaffold enhances angiogenesis and perfusion in ischemic hind limb. J Biomed Mater Res A, 100A(6):1438-1447.
[49]YangSZ, LiuYF, FengXB, et al., 2021. HBx acts as an oncogene and promotes the invasion and metastasis of hepatocellular carcinoma both in vivo and vitro. Dig Liver Dis, 53(3):360-366.
[50]YangWF, HanF, ZhangXH, et al., 2013. Extra-pulmonary tuberculosis infection in the dialysis patients with end stage renal diseases: case reports and literature review. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 14(1):76-82.
[51]YinM, DingXR, YinS, et al., 2023. Exosomes from hepatitis B virus-infected hepatocytes activate hepatic stellate cells and aggravate liver fibrosis through the miR-506-3p/Nur77 pathway. J Biochem Mol Toxicol, 37(10):e23432.
[52]ZhangH, YanXL, GuoXX, et al., 2018. MiR-27a as a predictor for the activation of hepatic stellate cells and hepatitis B virus-induced liver cirrhosis. Oncotarget, 9:1075-1090.
[53]ZhaoYL, ZhangS, ZhouJY, et al., 2010. The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells. Biomaterials, 31(2):296-307.
[54]ZhouX, ZhangYL, WangHF, et al., 2018. The development of an extra-anatomic tissue-engineered artery with collateral arteries for therapeutic angiogenesis in ischemic hind limb. Sci Rep, 8:4627.
Open peer comments: Debate/Discuss/Question/Opinion
<1>