Full Text:   <5786>

Summary:  <2026>

CLC number: TN43

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2014-11-06

Cited: 0

Clicked: 7462

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ting GUO

http://orcid.org/0000-0002-7853-7479

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE C 2014 Vol.15 No.12 P.1200-1210

http://doi.org/10.1631/jzus.C1400091


A 37 GHz wide-band programmable divide-by-N frequency divider for millimeter-wave silicon-based phase-locked loop frequency synthesizers


Author(s):  Ting Guo, Zhi-qun Li, Qin Li, Zhi-gong Wang

Affiliation(s):  School of Integrated Circuits, Southeast University, Nanjing 210096, China; more

Corresponding email(s):   guotingseu@gmail.com, zhiqunli@seu.edu.cn

Key Words:  Wide-band, Divide-by-N, Frequency divider, Dynamic current-mode logic (DCML), Pulse and swallow counters, CMOS


Share this article to: More <<< Previous Article|

Ting Guo, Zhi-qun Li, Qin Li, Zhi-gong Wang. A 37 GHz wide-band programmable divide-by-N frequency divider for millimeter-wave silicon-based phase-locked loop frequency synthesizers[J]. Journal of Zhejiang University Science C, 2014, 15(12): 1200-1210.

@article{title="A 37 GHz wide-band programmable divide-by-N frequency divider for millimeter-wave silicon-based phase-locked loop frequency synthesizers",
author="Ting Guo, Zhi-qun Li, Qin Li, Zhi-gong Wang",
journal="Journal of Zhejiang University Science C",
volume="15",
number="12",
pages="1200-1210",
year="2014",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1400091"
}

%0 Journal Article
%T A 37 GHz wide-band programmable divide-by-N frequency divider for millimeter-wave silicon-based phase-locked loop frequency synthesizers
%A Ting Guo
%A Zhi-qun Li
%A Qin Li
%A Zhi-gong Wang
%J Journal of Zhejiang University SCIENCE C
%V 15
%N 12
%P 1200-1210
%@ 1869-1951
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1400091

TY - JOUR
T1 - A 37 GHz wide-band programmable divide-by-N frequency divider for millimeter-wave silicon-based phase-locked loop frequency synthesizers
A1 - Ting Guo
A1 - Zhi-qun Li
A1 - Qin Li
A1 - Zhi-gong Wang
J0 - Journal of Zhejiang University Science C
VL - 15
IS - 12
SP - 1200
EP - 1210
%@ 1869-1951
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1400091


Abstract: 
A 37 GHz wide-band programmable divide-by-N frequency divider (FD) composed of a divide-by-2 divider (acting as the first stage) and a divider with a division ratio range of 273–330 (acting as the second stage) has been designed and fabricated using standard 90 nm CMOS technology. The second stage divider consists of a high-speed divide-by-8/9 dual-modulus prescaler, a pulse counter, and a swallow counter. Both the first stage divider (with high speed) and the divide-by-8/9 prescaler employ dynamic current-mode logic (DCML) structure to improve the operating performance. The first stage divider can work from 2 to 40 GHz and the whole divider covers a wide frequency range from 25 to 37 GHz. The input sensitivity is as low as −20 dBm at 32 GHz and the phase noise at 37 GHz is less than −130 dBc/Hz at an offset of 1 MHz. The whole chip dissipates 17.88 mW at a supply voltage of 1.2 V and occupies an area of only 730 μm ×475 μm.

应用于硅基毫米波锁相环频率综合器的37GHz宽带可编程模分频器

基于硅基毫米波锁相环设计需求,设计模数连续可变的可编程毫米波分频器。 本文的毫米波宽带可编程模分频器采用改进的动态电流模式逻辑结构,包括第一级二分频器和基于吞咽脉冲计数器结构的第二级可编程分频器。实现了毫米波段分频器分频比的连续可调,同时保证了分频器的宽带特性、且功耗较低,该设计适用于毫米波锁相环频率综合器。 首先,设计分析毫米波分频器的设计瓶颈,即第一级二分频器。该二分频器处于锁相环环路的最高工作频率处,设计最为复杂。本设计采用改进的动态电流模式逻辑结构,实现了2-40 GHz宽带二分频器(图4)。接着,介绍第二级可编程分频器设计中的核心模块8/9双模分频器(图5、6)。然后,介绍可编程分频器实现分频比连续可调的计数器部分,即吞咽脉冲计数器设计。最后,给出第一级二分频器和整个毫米波宽带可编程模分频器的测试验证曲线。 实现基于吞咽计数器的毫米波可编程分频器设计,从而实现毫米波分频器的分频比连续可调和毫米波锁相环频率的高精度调节。测试结果表明本文设计的第一级二分频器能够更好地应用于低功耗宽带可调(表1)的毫米波锁相环。
宽带;模;分频器;动态电流模式逻辑;吞咽脉冲计数器;CMOS

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Cheema, H.M., Mahmoudi, R., van Roermund, A., 2010. A 40-GHz phase-locked loop front-end for 60-GHz transceivers in 65nm CMOS. IEEE Asia Pacific Conf. on Circuits and Systems, p.967-970.

[2]Chen, H.K., Wang, T., Lu, S.S., 2011. A millimeter-wave CMOS triple-band phase-locked loop with a multimode LC-based ILFD. IEEE Trans. Microw. Theory Tech., 59(5):1327-1338.

[3]Ding, Y., Kenneth, K.O., 2007. A 21 GHz 8-modulus prescaler and a 20-GHz phase-locked loop fabricated in 130-nm CMOS. IEEE J. Solid-State Circ., 42(6):1240-1249.

[4]Eschenko, E., Candidate, M.S., Entesari, K., 2007. A low noise 13 GHz power efficient 16/17 prescaler with rail to rail output amplitude. Proc. 50th Midwest Symp. on Circuits and Systems, p.427-430.

[5]Gai, X.L., Chartier, S., Trasser, A., et al., 2011. A 35 GHz dual-loop PLL with low phase noise and fast lock for millimeter wave applications. IEEE MTT-S Int. Microwave Symp. Digest, p.1-4.

[6]Gao, Z.Q., Xu, Y.X., Sun, P., et al., 2010. A programmable high-speed pulse swallow divide-by-N frequency divider for PLL frequency synthesizer. Int. Conf. on Computer Application and System Modeling, p.V6.315-V6.318.

[7]Guo, T., Li, Z.Q., Li, Q., et al., 2012. A 7-27 GHz DSCL divide-by-2 frequency divider. J. Semicond., 33(10):105006.

[8]Hammad, M.C., Mahmoudi, R., van Zeijl, P.T.M., et al., 2010. A 40-GHz phase-locked loop for 60-GHz sliding-IF transceivers in 65nm CMOS. IEEE Asian Solid State Circuits Conf., p.1-4.

[9]Jau, T.S., Yang, W.B., Lo, Y.L., 2006. A new dynamic floating input D flip-flop (DFIDFF) for high speed and ultra low voltage divided-by 4/5 prescaler. Proc. 13th IEEE Int. Conf. on Electronics, Circuits and Systems, p.902-905.

[10]Luo, T., Chen, Y., 2008. A 0.8-mW 55-GHz dual-injection-locked CMOS frequency divider. IEEE Trans. Microw. Theory Tech., 56(3):620-625.

[11]Murphy, D., Gu, Q.J., Wu, Y., et al., 2011. A low phase noise, wideband and compact CMOS PLL for use in a heterodyne 802.15.3c transceiver. IEEE J. Solid-State Circ., 46(7):1606-1617.

[12]Pellerano, S., Mukhopadhyay, R., Ravi, A., et al., 2008. A 39.1-to-41.6GHz ΔΣ fractional-N frequency synthesizer in 90nm CMOS. IEEE Int. Solid-State Circuits Conf., Digest of Technical Papers, p.484-630.

[13]Reyes, N., Zorzi, P., Jarufe, C., et al., 2010. Construction of a heterodyne receiver for band 1 of ALMA. Proc. 21st Int. Symp. on Space Terahertz Technology, p.366-367.

[14]Sheng, N.H., Pierson, R.L., Wang, K.C., et al., 1991. A high-speed multimodulus HBT prescaler for frequency synthesizer applications. IEEE J. Solid-State Circ., 26(10):1362-1367.

[15]Usama, M., Kwasniewski, T.A., 2006. A 40-GHz frequency divider in 90-nm CMOS technology. IEEE North-East Workshop on Circuits and Systems, p.41-43.

[16]Vaucher, C.S., Ferencic, I., Locher, M., et al., 2000. A family of low-power truly modular programmable dividers in standard 0.35-/spl mu/m CMOS technology. IEEE J. Solid-State Circ., 35(7):1039-1045.

[17]Wang, K.P., Ma, K.X., Yeo, K.S., 2012. Low-power high-speed dual-modulus prescaler for Gb/s applications. IEEE Asia Pacific Conf. on Circuits and Systems, p.256-259.

[18]Wong, K.L.J., Rylyakov, A., Yang, C.K.K., 2005. A broadband 44-GHz frequency divider in 90-nm CMOS. IEEE Compound Semiconductor Integrated Circuit Symp., p.196-199.

[19]Yang, C.Y., Dehng, G.K., Liu, S.I., 1997. High-speed divide-by-4/5 counter for a dual-modulus prescaler. Electron. Lett., 33(20):1691-1692.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE