Full Text:   <2205>

Summary:  <1728>

CLC number: TN386.1

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2019-12-12

Cited: 0

Clicked: 5587

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiang-lei He

http://orcid.org/0000-0003-4995-0085

Feng Yang

http://orcid.org/0000-0003-2028-5704

Dan Wang

http://orcid.org/0000-0002-3515-4590

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2019 Vol.20 No.12 P.1698-1705

http://doi.org/10.1631/FITEE.1900363


Zirconia quantum dots for a nonvolatile resistive random access memory device


Author(s):  Xiang-lei He, Rui-jie Tang, Feng Yang, Mayameen S. Kadhim, Jie-xin Wang, Yuan Pu, Dan Wang

Affiliation(s):  State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; more

Corresponding email(s):   yf@swjtu.edu.cn, wangdan@mail.buct.edu.cn

Key Words:  Zirconia quantum dot, Resistive switching, Memory device, Spin coating



Abstract: 
We propose a nonvolatile resistive random access memory device by employing nanodispersion of zirconia (ZrO2) quantum dots (QDs) for the formation of an active layer. The memory devices comprising a typical sandwich structure of Ag (top)/ZrO2 (active layer)/Ti (bottom) are fabricated using a facile spin-coating method. The optimized device exhibits a high resistance state/low resistance state resistance difference (about 10 Ω), a good cycle performance (the number of cycles larger than 100), and a relatively low conversion current (about 1 μA). Atomic force microscopy and scanning electron microscope are used to observe the surface morphology and stacking state of the ZrO2 active layer. Experimental results show that the ZrO2 active layer is stacked compactly and has a low roughness (Ra=4.49 nm) due to the uniform distribution of the ZrO2 QDs. The conductive mechanism of the Ag/ZrO2/Ti device is analyzed and studied, and the conductive filaments of Ag ions and oxygen vacancies are focused on to clarify the resistive switching memory behavior. This study offers a facile approach of memristors for future electronic applications.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE