CLC number: TN82
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-01-03
Cited: 0
Clicked: 6433
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-3083-0166
Wei E. I. Liu, Zhi Ning Chen, Xianming Qing. Dispersion-engineered wideband low-profile metasurface antennas[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(1): 27-38.
@article{title="Dispersion-engineered wideband low-profile metasurface antennas",
author="Wei E. I. Liu, Zhi Ning Chen, Xianming Qing",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="21",
number="1",
pages="27-38",
year="2020",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.1900473"
}
%0 Journal Article
%T Dispersion-engineered wideband low-profile metasurface antennas
%A Wei E. I. Liu
%A Zhi Ning Chen
%A Xianming Qing
%J Frontiers of Information Technology & Electronic Engineering
%V 21
%N 1
%P 27-38
%@ 2095-9184
%D 2020
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.1900473
TY - JOUR
T1 - Dispersion-engineered wideband low-profile metasurface antennas
A1 - Wei E. I. Liu
A1 - Zhi Ning Chen
A1 - Xianming Qing
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 21
IS - 1
SP - 27
EP - 38
%@ 2095-9184
Y1 - 2020
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.1900473
Abstract: A metasurface (MTS) can be characterized in terms of dispersion properties of guided waves and surface waves. By engineering the rich dispersion relations, setting particular boundary conditions, and selecting proper excitation schemes, multiple adjacent resonance modes can be excited to realize the wideband operation of low-profile MTS antennas. We introduce the operating principles of typical dispersion-engineered MTS antennas, and review the recent progress in dispersion-engineered MTS antenna technology. The miniaturization, circular polarization, beam-scanning, and other functionalities of MTS antennas are discussed. The recent development of MTS antennas has not only provided promising solutions to the wideband and low-profile antenna design but also proven great potential of MTS in developing innovative antenna technologies.
[1]Caloz C, Itoh T, 2005. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. Wiley-IEEE Press, New York, USA.
[2]Chen DX, Yang WC, Che WQ, et al., 2019. Broadband stable- gain multiresonance antenna using nonperiodic square- ring metasurface. IEEE Antenn Wirel Propag Lett, 18(8): 1537-1541.
[3]Chen HT, Taylor AJ, Yu NF, 2016. A review of metasurfaces: physics and applications. Rep Prog Phys, 79(7):076401.
[4]Chen Q, Zhang H, Shao YJ, et al., 2018. Bandwidth and gain improvement of an L-shaped slot antenna with meta- material loading. IEEE Antenn Wirel Propag Lett, 17(8): 1411-1415.
[5]Costa F, Luukkonen O, Simovski CR, et al., 2011. TE surface wave resonances on high-impedance surface based antennas: analysis and modeling. IEEE Trans Antenn Propag, 59(10):3588-3596.
[6]Eleftheriades GV, Balmain KG, 2005. Negative-Refraction Metamaterials: Fundamental Principles and Applications. Wiley-IEEE Press, New York, USA.
[7]Erfani E, Niroo-Jazi M, Tatu S, 2016. A high-gain broadband gradient refractive index metasurface lens antenna. IEEE Trans Antenn Propag, 64(5):1968-1973.
[8]Glybovski SB, Tretyakovb SA, Belov PA, et al., 2016. Metasurfaces: from microwaves to visible. Phys Rep, 634:1-72.
[9]Gu L, Zhao YW, Cai QM, et al., 2017. Scanning enhanced low-profile broadband phased array with radiator-sharing approach and defected ground structures. IEEE Trans Antenn Propag, 65(11):5846-5854.
[10]Holloway CL, Kuester EF, Gordon JA, et al., 2012. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antenn Propag Mag, 54(2):10-35.
[11]Huang YJ, Yang L, Li J, et al., 2016. Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna. Appl Phys Lett, 109(5): 054101.
[12]Jia YT, Liu Y, Wang H, et al., 2015. Low-RCS, high-gain, and wideband mushroom antenna. IEEE Antenn Wirel Propag Lett, 14:277-280.
[13]Jiang M, Chen ZN, Zhang Y, et al., 2017. Metamaterial-based thin planar lens antenna for spatial beamforming and multibeam massive MIMO. IEEE Trans Antenn Propag, 65(2):464-472.
[14]Juan Y, Yang WC, Che WQ, 2019. Miniaturized low-profile circularly polarized metasurface antenna using capacitive loading. IEEE Trans Antenn Propag, 67(5):3527-3532.
[15]Li AB, Singh S, Sievenpiper D, 2018. Metasurfaces and their applications. Nanophotonics, 7(6):989-1011.
[16]Li HP, Wang GM, Xu HX, et al., 2015. X-band phase-gradient metasurface for high-gain lens antenna application. IEEE Trans Antenn Propag, 63(11):5144-5149.
[17]Li M, Xiao SQ, Wang BZ, 2015. Investigation of using high impedance surfaces for wide-angle scanning arrays. IEEE Trans Antenn Propag, 63(7):2895-2901.
[18]Li T, Chen ZN, 2018. Metasurface-based shared-aperture 5G S-/K-band antenna using characteristic mode analysis. IEEE Trans Antenn Propag, 66(12):6742-6750.
[19]Lin FH, Chen ZN, Liu W, et al., 2015. A metamaterial-based broadband circularly polarized aperture-fed grid-slotted patch antenna. IEEE 4th Asia-Pacific Conf on Antennas and Propagation, p.353-354.
[20]Liu W, Chen ZN, Qing X, 2014a. Metamaterial-based low-profile broadband mushroom antenna. IEEE Trans Antenn Propag, 62(3):1165-1172.
[21]Liu W, Chen ZN, Qing X, 2014b. Stripline aperture coupled metamaterial mushroom antenna with increased front-to-back ratio. IEEE Antennas and Propagation Society Int Symp, p.444-445.
[22]Liu W, Chen ZN, Qing X, 2014c. 60-GHz thin broadband high-gain LTCC metamaterial—mushroom antenna array. IEEE Trans Antenn Propag, 62(9):4592-4601.
[23]Liu W, Chen ZN, Qing X, 2015a. Metamaterial-based low-profile broadband aperture-coupled grid-slotted patch antenna. IEEE Trans Antenn Propag, 63(7):3325- 3329.
[24]Liu W, Qing X, Chen ZN, 2015b. Metamaterial-based wideband shorting-wall loaded mushroom array antenna. 9th European Conf on Antennas and Propagation, p.1-4.
[25]Liu WEI, Chen ZN, Qing X, 2017a. Compact wideband metasurface-based circularly polarized antenna for Ka-band phased array. IEEE-APS Tropical Conf on Antennas and Propagation in Wireless Communications, p.17-21.
[26]Liu W, Chen ZN, Qing X, 2017b. Miniaturized broadband metasurface antenna using stepped impedance resonators. IEEE 5th Asia-Pacific Conf on Antennas and Propagation, p.365-366.
[27]Liu WEI, Chen ZN, Qing X, et al., 2017c. Miniaturized wideband metasurface antennas. IEEE Trans Antenn Propag, 65(12):7345-7349.
[28]Liu W, Chen ZN, Qing X, 2017d. Mode analysis and experimental verification of shorting-wall loaded mushroom antenna. Asia-Pacific Microwave Conf, p.1-4.
[29]Luukkonen O, Simovski C, Granet G, et al., 2008. Simple and accurate analytical model of planar grids and high- impedance surfaces comprising metal strips or patches. IEEE Trans Antenn Propag, 56(6):1624-1632.
[30]Pan YM, Hu P, Zhang XY, et al., 2016. A low-profile high-gain and wideband filtering antenna with metasurface. IEEE Trans Antenn Propag, 64(5):2010-2016.
[31]Shelby RA, Smith DR, Schultz S, 2001. Experimental verification of a negative index of refraction. Science, 292(5514):77-79.
[32]Sievenpiper D, Zhang LJ, Broas RFJ, et al., 1999. High- impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans Microw Theor Techn, 47(11): 2059-2074.
[33]Smith DR, Padilla WJ, Vier DC, et al., 2000. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett, 84(18):4184-4187.
[34]Sun WY, Li Y, Zhang ZJ, et al., 2019. Low-profile and wideband microstrip antenna using quasi-periodic aperture and slot-to-CPW transition. IEEE Trans Antenn Propag, 67(1):632-637.
[35]Syed Nasser SS, Liu W, Chen ZN, 2018. Wide bandwidth and enhanced gain of a low-profile dipole antenna achieved by integrated suspended metasurface. IEEE Trans Antenn Propag, 66(3):1540-1544.
[36]Ta SX, Park I, 2015. Low-profile broadband circularly polarized patch antenna using metasurface. IEEE Trans Antenn Propag, 63(12):5929-5934.
[37]Wang JF, Wong H, Ji ZQ, et al., 2019. Broadband CPW-fed aperture coupled metasurface antenna. IEEE Antenn Wirel Propag Lett, 18(3):517-520.
[38]Wu Z, Li L, Li YJ, et al., 2016. Metasurface superstrate antenna with wideband circular polarization for satellite communication application. IEEE Antenn Wirel Propag Lett, 15:374-377.
[39]Wu Z, Liu HX, Li L, 2019. Metasurface-inspired low profile polarization reconfigurable antenna with simple DC controlling circuit. IEEE Access, 7:45073-45079.
[40]Yang F, Rahmat-Samii Y, 2003. Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications. IEEE Trans Antenn Propag, 51(10):2936-2946.
[41]Yang WC, Chen S, Che WQ, et al., 2018. Compact high-gain metasurface antenna arrays based on higher-mode SIW cavities. IEEE Trans Antenn Propag, 66(9):4918-4923.
[42]Yang WC, Gu LZ, Che WQ, et al., 2019. A novel steerable dual-beam metasurface antenna based on controllable feeding mechanism. IEEE Trans Antenn Propag, 67(2): 784-793.
[43]Zhang WB, Liu Y, Jia YT, 2019. Circularly polarized antenna array with low RCS using metasurface-inspired antenna units. IEEE Antenn Wirel Propag Lett, 18(7):1453-1457.
[44]Zhao C, Wang CF, 2018. Characteristic mode design of wide band circularly polarized patch antenna consisting of H-shaped unit cells. IEEE Access, 6:25292-25299.
[45]Zhao Y, Cao XY, Gao J, et al., 2017. Broadband low-RCS circularly polarized array using metasurface-based element. IEEE Antenn Wirel Propag Lett, 16:1836-1839.
[46]Zheng Q, Guo CJ, Ding J, 2018. Wideband and low RCS circularly polarized slot antenna based on polarization conversion of metasurface for satellite communication application. Microw Opt Technol Lett, 60(3):679-685.
[47]Zhou CF, Cheung SW, Li QL, et al., 2017. Bandwidth and gain improvement of a crossed slot antenna with metasurface. Appl Phys Lett, 110(21):211603.
Open peer comments: Debate/Discuss/Question/Opinion
<1>