CLC number: TN29
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2020-06-05
Cited: 0
Clicked: 5183
Citations: Bibtex RefMan EndNote GB/T7714
Shuai Wang, Lei Li, Yu-feng Song, Ding-yuan Tang, De-yuan Shen, Lu-ming Zhao. Vector soliton and noise-like pulse generation using a Ti3C2 MXene material in a fiber laser[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(3): 318-324.
@article{title="Vector soliton and noise-like pulse generation using a Ti3C2 MXene material in a fiber laser",
author="Shuai Wang, Lei Li, Yu-feng Song, Ding-yuan Tang, De-yuan Shen, Lu-ming Zhao",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="3",
pages="318-324",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000033"
}
%0 Journal Article
%T Vector soliton and noise-like pulse generation using a Ti3C2 MXene material in a fiber laser
%A Shuai Wang
%A Lei Li
%A Yu-feng Song
%A Ding-yuan Tang
%A De-yuan Shen
%A Lu-ming Zhao
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 3
%P 318-324
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000033
TY - JOUR
T1 - Vector soliton and noise-like pulse generation using a Ti3C2 MXene material in a fiber laser
A1 - Shuai Wang
A1 - Lei Li
A1 - Yu-feng Song
A1 - Ding-yuan Tang
A1 - De-yuan Shen
A1 - Lu-ming Zhao
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 3
SP - 318
EP - 324
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000033
Abstract: We built a Tm:Ho co-doped fiber laser using a Ti3C2 MXene material as a saturable absorber (SA). The formation of vector solitons (VSs) and noise-like pulses (NLPs) was observed. The SA was prepared by dripping a Ti3C2 solution on a side-polished D-shaped fiber and then naturally vaporized. The VS is characterized by two coexisting sets of Kelly sidebands. By modulating the polarization controller in the fiber laser, NLPs with about 3.3 nm bandwidth can be switched from the VS. To the best of our knowledge, this is the first time that VSs have been generated in a fiber laser using a Ti3C2 MXene material as the SA.
[1]Chen Y, Jiang GB, Chen SQ, et al., 2015. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt Expr, 23(10):12823-12833.
[2]Feng XY, Ding BY, Liang WY, et al., 2018. MXene Ti3C2Tx absorber for a 1.06 μm passively Q-switched ceramic laser. Laser Phys Lett, 15(8):085805.
[3]Hantanasirisakul K, Zhao MQ, Urbankowski P, et al., 2016. Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv Electron Mater, 2(6):1600050.
[4]Jiang Q, Zhang M, Zhang Q, et al., 2019. Thulium-doped mode-locked fiber laser with MXene saturable absorber. Conf on Lasers and Electro-Optics, Article SF3O.3.
[5]Jiang T, Yin K, Wang C, et al., 2020. Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect. Photon Res, 8(1):78-90.
[6]Lei JC, Zhang X, Zhou Z, 2015. Recent advances in MXene: preparation, properties, and applications. Front Phys, 10(3):276-286.
[7]Li J, Zhang ZL, Du L, et al., 2019. Highly stable femtosecond pulse generation from a MXene Ti3C2Tx (T=F, O, or OH) mode-locked fiber laser. Photon Res, 7(3):260-264.
[8]Lu J, Zou X, Li C, et al., 2017. Picosecond pulse generation in a mono-layer MoS2 mode-locked Ytterbium-doped thin disk laser. Chin Opt Lett, 15(4):041401.
[9]Luo ZQ, Zhou M, Weng J, et al., 2010. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser. Opt Lett, 35(21):3709-3711.
[10]Miao RL, Tong MY, Yin K, et al., 2019. Soliton mode-locked fiber laser with high-quality MBE-grown Bi2Se3 film. Chin Opt Lett, 17(7):071403.
[11]Naguib M, Kurtoglu M, Presser V, et al., 2011. Two‐ dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater, 23(37):4248-4253.
[12]Nicholson JW, Windeler RS, DiGiovanni DJ, 2007. Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces. Opt Expr, 15(15):9176-9183.
[13]Qin ZP, Xie GQ, Zhang H, et al., 2015. Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm. Opt Expr, 23(19):24713-24718.
[14]Scholle K, Lamrini S, Koopmann P, et al., 2010. 2 µm laser sources and their possible applications. In: Pal B (Ed.), Frontiers in Guided Wave Optics and Optoelectronics. InTech, Vukovar, p.471-500.
[15]Shi W, Fang Q, Zhu XS, et al., 2014. Fiber lasers and their applications [invited]. Appl Opt, 53(28):6554-6568.
[16]Song YF, Zhang H, Tang DY, et al., 2012. Polarization rotation vector solitons in a graphene mode-locked fiber laser. Opt Expr, 20(24):27283-27289.
[17]Song YF, Chen S, Zhang Q, et al., 2016. Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber. Opt Expr, 24(23):25933-25942.
[18]Song YF, Chen YX, Jiang XT, et al., 2019a. Nonlinear few‐layer MXene‐assisted all‐optical wavelength conversion at telecommunication band. Adv Opt Mater, 7(18):1801777.
[19]Song YF, Shi XJ, Wu CF, et al., 2019b. Recent progress of study on optical solitons in fiber lasers. Appl Phys Rev, 6(2):021313.
[20]Sotor J, Sobon G, Kowalczyk M, et al., 2015. Ultrafast thulium-doped fiber laser mode locked with black phosphorus. Opt Lett, 40(16):3885-3888.
[21]Tang YX, Chong A, Wise FW, 2015. Generation of 8 nJ pulses from a normal-dispersion thulium fiber laser. Opt Lett, 40(10):2361-2364.
[22]Wang C, Peng QQ, Fan XW, et al., 2018. MXene Ti3C2Tx saturable absorber for pulsed laser at 1.3 μm. Chin Phys B, 27(9):094214.
[23]Wang C, Wang YZ, Jiang XT, et al., 2019. MXene Ti3C2Tx: a promising photothermal conversion material and application in all‐optical modulation and all‐optical information loading. Adv Opt Mater, 7(12):1900060.
[24]Yin K, Zhang B, Li L, et al., 2015. Soliton mode-locked fiber laser based on topological insulator Bi2Te3 nanosheets at 2 μm. Photon Res, 3(3):72-76.
[25]Zhang CX, Ouyang H, Miao RL, et al., 2019. Anisotropic nonlinear optical properties of a SnSe flake and a novel perspective for the application of all‐optical switching. Adv Opt Mater, 7(18):1900631.
[26]Zhang H, Tang DY, Zhao LM, et al., 2009. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt Expr, 17(20):17630-17635.
[27]Zhang H, Tang DY, Knize RJ, et al., 2010. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Appl Phys Lett, 96(11):111112.
[28]Zhang J, Jiang T, Zhou T, et al., 2018. Saturated absorption of different layered Bi2Se3 films in the resonance zone. Photon Res, 6(10):C8-C14.
[29]Zhao B, Tang DY, Kong J, et al., 2005. Periodic soliton amplitude variation caused by unstable dispersive waves in a laser. Opt Commun, 254(4-6):242-247.
[30]Zu YQ, Zhang C, Guo XS, et al., 2019. A solid-state passively Q-switched Tm,Gd:CaF2 laser with a Ti3C2Tx MXene absorber near 2 µm. Laser Phys Lett, 16(1):015803.
Open peer comments: Debate/Discuss/Question/Opinion
<1>