CLC number: O439
On-line Access: 2025-10-13
Received: 2025-01-05
Revision Accepted: 2025-04-07
Crosschecked: 2025-10-13
Cited: 0
Clicked: 548
Yueying WANG, Yiwen HU, Yuehan ZHAO, Cuifang KUANG, Xiang HAO. Numerical investigation of resolution in single emitter localization-based imaging systems[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(9): 1721-1732.
@article{title="Numerical investigation of resolution in single emitter localization-based imaging systems",
author="Yueying WANG, Yiwen HU, Yuehan ZHAO, Cuifang KUANG, Xiang HAO",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="9",
pages="1721-1732",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500015"
}
%0 Journal Article
%T Numerical investigation of resolution in single emitter localization-based imaging systems
%A Yueying WANG
%A Yiwen HU
%A Yuehan ZHAO
%A Cuifang KUANG
%A Xiang HAO
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 9
%P 1721-1732
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500015
TY - JOUR
T1 - Numerical investigation of resolution in single emitter localization-based imaging systems
A1 - Yueying WANG
A1 - Yiwen HU
A1 - Yuehan ZHAO
A1 - Cuifang KUANG
A1 - Xiang HAO
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 9
SP - 1721
EP - 1732
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500015
Abstract: In this paper, we numerically analyze the factors determining localization precision and resolution in single emitter localization-based imaging systems. While previous studies have considered a limited set of parameters, our numerical approach incorporates additional parameters with significant reference values, yielding a more comprehensive analysis of the results. We differentiate between the effects of additive and multiplicative noise on localization precision using numerical modeling and take the influence of the sampling frequency into account, computing the optimal sampling frequency for varying resolution requirements. Leveraging a suite of derived equations, we systematically simulate and quantify how variations in these parameters influence system performance. Furthermore, we provide guidelines for optimizing signal-to-noise ratio (SNR) requirements and pixel size selection based on point spread function (PSF) width in single emitter localization-based imaging systems. This numerically driven research offers critical insights for the analysis of more complex imaging systems.
[1]Abraham AV, Ram S, Chao J, et al., 2010. Comparison of estimation algorithms in single-molecule localization. Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVII, p.28-34.
[2]Banterle N, Bui KH, Lemke EA, et al., 2013. Fourier ring correlation as a resolution criterion for super-resolution microscopy. J Struct Biol, 183(3):363-367.
[3]Bergermann F, Alber L, Sahl SJ, et al., 2015. 2000-fold parallelized dual-color STED fluorescence nanoscopy. Opt Expr, 23(1):211-223.
[4]Betzig E, Patterson GH, Sougrat R, et al., 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313(5793):1642-1645.
[5]Chen BC, Legant WR, Wang K, et al., 2014. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science, 346(6208):1257998.
[6]Deng Y, Shaevitz JW, 2009. Effect of aberration on height calibration in three-dimensional localization-based microscopy and particle tracking. Appl Opt, 48(10):1886-1890.
[7]Deschout H, Zanacchi FC, Mlodzianoski M, et al., 2014. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat Methods, 11(3):253-266.
[8]Gustafsson MGL, 2000. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc, 198(2):82-87.
[9]Gustafsson MGL, 2005. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA, 102(37):13081-13086.
[10]Hell SW, Wichmann J, 1994. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett, 19(11):780-782.
[11]Hughes JM, DeForest CE, Seaton DB, 2023. Coma off it: regularizing variable point-spread functions. Astron J, 165(5):204.
[12]Izeddin I, El Beheiry M, Andilla J, et al., 2012. PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking. Opt Expr, 20(5):4957-4967.
[13]Jain A, 1989. Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs, USA.
[14]Janssen AJEM, 2002. Extended Nijboer–Zernike approach for the computation of optical point-spread functions. J Opt Soc Am A, 19(5):849-857.
[15]Křížek P, Raška I, Hagen GM, 2011. Minimizing detection errors in single molecule localization microscopy. Opt Expr, 19(4):3226-3235.
[16]Legant WR, Shao L, Grimm JB, et al., 2016. High-density three-dimensional localization microscopy across large volumes. Nat Methods, 13(4):359-365.
[17]Lelek M, Gyparaki MT, Beliu G, et al., 2021. Single-molecule localization microscopy. Nat Rev Methods Primers, 1(1):39.
[18]Liu S, Chen JW, Hellgoth J, et al., 2024. Universal inverse modeling of point spread functions for SMLM localization and microscope characterization. Nat Methods, 21(6):1082-1093.
[19]Liu X, Tu SJ, Xu Y, et al., 2020. Aberrations in structured illumination microscopy: a theoretical analysis. Front Phys, 7:254.
[20]Merhav N, 2021. Optimal correlators for detection and estimation in optical receivers. IEEE Trans Inform Theory, 67(8):5200-5210.
[21]Mukamel EA, Babcock H, Zhuang XW, 2012. Statistical deconvolution for superresolution fluorescence microscopy. Biophys J, 102(10):2391-2400.
[22]Munier N, Soubies E, Weiss P, 2024. The MLE is a reliable source: sharp performance guarantees for localization problems. Inverse Probl, 40(1):014001.
[23]Ober RJ, Ram S, Ward ES, 2004. Localization accuracy in single-molecule microscopy. Biophys J, 86(2):1185-1200.
[24]Rust MJ, Bates M, Zhuang XW, 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods, 3(10):793-796.
[25]Sanches JM, Nascimento JC, Marques JS, 2008. Medical image noise reduction using the Sylvester–Lyapunov equation. IEEE Trans Image Process, 17(9):1522-1539.
[26]Shannon CE, 1949. Communication in the presence of noise. Proc IRE, 37(1):10-21.
[27]Snoeyink C, 2013. Imaging performance of Bessel beam microscopy. Opt Lett, 38(14):2550-2553.
[28]Tachi K, Hirasawa T, Okawa S, et al., 2021. Chromatic-aberration-free multispectral optical-resolution photoacoustic microscopy using reflective optics and a supercontinuum light source. Appl Opt, 60(31):9651-9658.
[29]Thompson RE, Larson DR, Webb WW, 2002. Precise nanometer localization analysis for individual fluorescent probes. Biophys J, 82(5):2775-2783.
[30]Virant D, Turkowyd B, Balinovic A, et al., 2017. Combining primed photoconversion and UV-photoactivation for aberration-free, live-cell compliant multi-color single-molecule localization microscopy imaging. Int J Mol Sci, 18(7):1524.
[31]von Diezmann L, Shechtman Y, Moerner WE, 2017. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking. Chem Rev, 117(11):7244-7275.
[32]Wolter S, Schüttpelz M, Tscherepanow M, et al., 2010. Real-time computation of subdiffraction-resolution fluorescence images. J Microsc, 237(1):12-22.
[33]Yu B, Yu J, Li WH, et al., 2016. Nanoscale three-dimensional single particle tracking by light-sheet-based double-helix point spread function microscopy. Appl Opt, 55(3):449-453.
Open peer comments: Debate/Discuss/Question/Opinion
<1>