Full Text:   <657>

Suppl. Mater.: 

CLC number: O439

On-line Access: 2025-10-13

Received: 2025-01-05

Revision Accepted: 2025-04-07

Crosschecked: 2025-10-13

Cited: 0

Clicked: 548

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiang Hao

https://orcid.org/0000-0002-3931-6884

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2025 Vol.26 No.9 P.1721-1732

http://doi.org/10.1631/FITEE.2500015


Numerical investigation of resolution in single emitter localization-based imaging systems


Author(s):  Yueying WANG, Yiwen HU, Yuehan ZHAO, Cuifang KUANG, Xiang HAO

Affiliation(s):  College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):   yueyingw@zju.edu.cn, huyw@zju.edu.cn, zyuehan@zju.edu.cn, cfkuang@zju.edu.cn, haox@zju.edu.cn

Key Words:  Localization precision, Resolution, Single-point positioning, Oversampling, Signal-to-noise ratio (SNR


Yueying WANG, Yiwen HU, Yuehan ZHAO, Cuifang KUANG, Xiang HAO. Numerical investigation of resolution in single emitter localization-based imaging systems[J]. Frontiers of Information Technology & Electronic Engineering, 2025, 26(9): 1721-1732.

@article{title="Numerical investigation of resolution in single emitter localization-based imaging systems",
author="Yueying WANG, Yiwen HU, Yuehan ZHAO, Cuifang KUANG, Xiang HAO",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="26",
number="9",
pages="1721-1732",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2500015"
}

%0 Journal Article
%T Numerical investigation of resolution in single emitter localization-based imaging systems
%A Yueying WANG
%A Yiwen HU
%A Yuehan ZHAO
%A Cuifang KUANG
%A Xiang HAO
%J Frontiers of Information Technology & Electronic Engineering
%V 26
%N 9
%P 1721-1732
%@ 2095-9184
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2500015

TY - JOUR
T1 - Numerical investigation of resolution in single emitter localization-based imaging systems
A1 - Yueying WANG
A1 - Yiwen HU
A1 - Yuehan ZHAO
A1 - Cuifang KUANG
A1 - Xiang HAO
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 26
IS - 9
SP - 1721
EP - 1732
%@ 2095-9184
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2500015


Abstract: 
In this paper, we numerically analyze the factors determining localization precision and resolution in single emitter localization-based imaging systems. While previous studies have considered a limited set of parameters, our numerical approach incorporates additional parameters with significant reference values, yielding a more comprehensive analysis of the results. We differentiate between the effects of additive and multiplicative noise on localization precision using numerical modeling and take the influence of the sampling frequency into account, computing the optimal sampling frequency for varying resolution requirements. Leveraging a suite of derived equations, we systematically simulate and quantify how variations in these parameters influence system performance. Furthermore, we provide guidelines for optimizing signal-to-noise ratio (SNR) requirements and pixel size selection based on point spread function (PSF) width in single emitter localization-based imaging systems. This numerically driven research offers critical insights for the analysis of more complex imaging systems.

单发射器定位成像系统分辨率的数值研究

王玥颖1,胡逸雯1,赵悦晗1,匡翠方1,2,3,郝翔1,2
1浙江大学光电科学与工程学院,中国杭州市,310027
2浙江大学杭州国际科创中心,中国杭州市,311200
3极端光学协同创新中心,中国太原市,030006
摘要:本文对单发射器定位成像系统中影响定位精度和分辨率的因素进行了数值分析。之前的研究考虑的参数相对有限,而我们的数值方法增加了具有重要参考价值的附加参数,从而对结果进行了更全面的分析。我们用数值模拟区分加性噪声和乘性噪声对定位精度的影响,并考虑采样频率的影响,计算了不同分辨率要求下的最佳采样频率。利用一套推导方程,系统地模拟和量化这些参数的变化如何影响系统性能。此外,提供了优化单发射器定位成像系统中基于点扩展函数宽度的信噪比要求和像素尺寸选择的指导。这一数字驱动的研究为更复杂成像系统的分析提供了关键见解。

关键词:定位精度;分辨率;单点定位;过采样;信噪比

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abraham AV, Ram S, Chao J, et al., 2010. Comparison of estimation algorithms in single-molecule localization. Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XVII, p.28-34.

[2]Banterle N, Bui KH, Lemke EA, et al., 2013. Fourier ring correlation as a resolution criterion for super-resolution microscopy. J Struct Biol, 183(3):363-367.

[3]Bergermann F, Alber L, Sahl SJ, et al., 2015. 2000-fold parallelized dual-color STED fluorescence nanoscopy. Opt Expr, 23(1):211-223.

[4]Betzig E, Patterson GH, Sougrat R, et al., 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313(5793):1642-1645.

[5]Chen BC, Legant WR, Wang K, et al., 2014. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science, 346(6208):1257998.

[6]Deng Y, Shaevitz JW, 2009. Effect of aberration on height calibration in three-dimensional localization-based microscopy and particle tracking. Appl Opt, 48(10):1886-1890.

[7]Deschout H, Zanacchi FC, Mlodzianoski M, et al., 2014. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat Methods, 11(3):253-266.

[8]Gustafsson MGL, 2000. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc, 198(2):82-87.

[9]Gustafsson MGL, 2005. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA, 102(37):13081-13086.

[10]Hell SW, Wichmann J, 1994. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett, 19(11):780-782.

[11]Hughes JM, DeForest CE, Seaton DB, 2023. Coma off it: regularizing variable point-spread functions. Astron J, 165(5):204.

[12]Izeddin I, El Beheiry M, Andilla J, et al., 2012. PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking. Opt Expr, 20(5):4957-4967.

[13]Jain A, 1989. Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs, USA.

[14]Janssen AJEM, 2002. Extended Nijboer–Zernike approach for the computation of optical point-spread functions. J Opt Soc Am A, 19(5):849-857.

[15]Křížek P, Raška I, Hagen GM, 2011. Minimizing detection errors in single molecule localization microscopy. Opt Expr, 19(4):3226-3235.

[16]Legant WR, Shao L, Grimm JB, et al., 2016. High-density three-dimensional localization microscopy across large volumes. Nat Methods, 13(4):359-365.

[17]Lelek M, Gyparaki MT, Beliu G, et al., 2021. Single-molecule localization microscopy. Nat Rev Methods Primers, 1(1):39.

[18]Liu S, Chen JW, Hellgoth J, et al., 2024. Universal inverse modeling of point spread functions for SMLM localization and microscope characterization. Nat Methods, 21(6):1082-1093.

[19]Liu X, Tu SJ, Xu Y, et al., 2020. Aberrations in structured illumination microscopy: a theoretical analysis. Front Phys, 7:254.

[20]Merhav N, 2021. Optimal correlators for detection and estimation in optical receivers. IEEE Trans Inform Theory, 67(8):5200-5210.

[21]Mukamel EA, Babcock H, Zhuang XW, 2012. Statistical deconvolution for superresolution fluorescence microscopy. Biophys J, 102(10):2391-2400.

[22]Munier N, Soubies E, Weiss P, 2024. The MLE is a reliable source: sharp performance guarantees for localization problems. Inverse Probl, 40(1):014001.

[23]Ober RJ, Ram S, Ward ES, 2004. Localization accuracy in single-molecule microscopy. Biophys J, 86(2):1185-1200.

[24]Rust MJ, Bates M, Zhuang XW, 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods, 3(10):793-796.

[25]Sanches JM, Nascimento JC, Marques JS, 2008. Medical image noise reduction using the Sylvester–Lyapunov equation. IEEE Trans Image Process, 17(9):1522-1539.

[26]Shannon CE, 1949. Communication in the presence of noise. Proc IRE, 37(1):10-21.

[27]Snoeyink C, 2013. Imaging performance of Bessel beam microscopy. Opt Lett, 38(14):2550-2553.

[28]Tachi K, Hirasawa T, Okawa S, et al., 2021. Chromatic-aberration-free multispectral optical-resolution photoacoustic microscopy using reflective optics and a supercontinuum light source. Appl Opt, 60(31):9651-9658.

[29]Thompson RE, Larson DR, Webb WW, 2002. Precise nanometer localization analysis for individual fluorescent probes. Biophys J, 82(5):2775-2783.

[30]Virant D, Turkowyd B, Balinovic A, et al., 2017. Combining primed photoconversion and UV-photoactivation for aberration-free, live-cell compliant multi-color single-molecule localization microscopy imaging. Int J Mol Sci, 18(7):1524.

[31]von Diezmann L, Shechtman Y, Moerner WE, 2017. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking. Chem Rev, 117(11):7244-7275.

[32]Wolter S, Schüttpelz M, Tscherepanow M, et al., 2010. Real-time computation of subdiffraction-resolution fluorescence images. J Microsc, 237(1):12-22.

[33]Yu B, Yu J, Li WH, et al., 2016. Nanoscale three-dimensional single particle tracking by light-sheet-based double-helix point spread function microscopy. Appl Opt, 55(3):449-453.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE