CLC number: TG301
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 0000-00-00
Cited: 0
Clicked: 5323
SHEN Yu, YU Hu-ping, RUAN Xue-yu. Simulation study on fluctuant flow stress scale effect[J]. Journal of Zhejiang University Science A, 2006, 7(8): 1343-1350.
@article{title="Simulation study on fluctuant flow stress scale effect",
author="SHEN Yu, YU Hu-ping, RUAN Xue-yu",
journal="Journal of Zhejiang University Science A",
volume="7",
number="8",
pages="1343-1350",
year="2006",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.2006.A1343"
}
%0 Journal Article
%T Simulation study on fluctuant flow stress scale effect
%A SHEN Yu
%A YU Hu-ping
%A RUAN Xue-yu
%J Journal of Zhejiang University SCIENCE A
%V 7
%N 8
%P 1343-1350
%@ 1673-565X
%D 2006
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.2006.A1343
TY - JOUR
T1 - Simulation study on fluctuant flow stress scale effect
A1 - SHEN Yu
A1 - YU Hu-ping
A1 - RUAN Xue-yu
J0 - Journal of Zhejiang University Science A
VL - 7
IS - 8
SP - 1343
EP - 1350
%@ 1673-565X
Y1 - 2006
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.2006.A1343
Abstract: Crystal plasticity theory was used to simulate upsetting tests of different dimensions and grain size micro copper cylinders in this study on the fluctuant flow stress scale effect. Results showed that with the decrease of billet grain quantity, flow stress fluctuation is not always increased, but there is a maximum. Through this study, the fluctuant flow stress scale effect can be understood deeper, and relevant necessary information was obtained for further prediction and control of this scale effect and to design the microforming process and die.
[1] Balendra, R., Qin, Y., 2004. Research dedicated to the development of advanced metal forming technologies. Journal of Materials Processing Technology, 145(2):144-152.
[2] Cao, J., Krishnan, N., Wang, Z., Lu, H.S., Liu, W.K., Swanson, A., 2004. Microforming: experimental investigation of the extrusion process for micropins and its numerical simulation using RKEM. Transactions of the ASME, 126:642-652.
[3] Engel, U., Eckstein, R., 2002. Microforming—from basic research to its realization. Journal of Materials Processing Technology, 125:35-44.
[4] Engel, U., Egerer, E., 2003. Basic research on cold and warm forging of microparts. Key Engineering Materials, 236(1):449-456.
[5] Geiger, M., Eckstein, R., 2002. Microforming. Advanced Technology of Plasticity. Proceedings of the 7th ICTP. Yokohama, Japan, p.327-338.
[6] Geiger, M., Engel, U., 2002. Microforming—a challenge to the plasticity research community. Journal of the JSTP, 43(494):171-172.
[7] Geiger, M., Engel, U., Vollertsen, F., Kals, R., Meßner, A., 1994. Metal forming of micro parts for electronics. Production Engineering, 2(1):15-18.
[8] Geiger, M., Vollertsen, F., Kals, R., 1996. Fundamentals on the manufacturing of sheet metal microparts. Annals of the CIRP, 45(1):277-282.
[9] Geiger, M., Kleiner, M., Eckstein, R., Tiesler, N., Engel, U., 2001. Microforming. Annals of the CIRP, 50(2):445-462.
[10] Peirce, D., Asaro, R.J., Needleman, A., 1983. Material rate dependent and localized deformation in crystalline solids. Acta Metall. Mater., 31(12):1951-1976.
[11] Raulea, L.V., Govaert, L.E., Baaijens, F.P.T., 1999. Grain and Specimen Size Effects in Processing Metal Sheets. Advanced Technology of Plasticity. Proceedings of the 6th ICTP. Springer, Nuremberg, p.939-944.
[12] Tiesler, N., Engel, U., 2000. Microforming—Effects of Miniaturization. Metal Forming 2000. Balkema, Rotterdam, p.355-360.
[13] Tiesler, N., Engel, U., Geiger, M., 2002. Basic Research on Cold Forming of Microparts. Advanced Technology of Plasticity. Proceedings of the 7th ICTP. Yokohama, Japan, p.379-384.
[14] Wang, Z.Q., Duan, Z.P., 1995. Meso-Plasticity Mechanics. Science Publishing House, Beijing, p.263-305 (in Chinese).
Open peer comments: Debate/Discuss/Question/Opinion
<1>