References
[1] Ait Ali, N., Bernal, M.P., Ater, M., 2002. Tolerance and bioaccumulation of copper in
Phragmites australis and
Zea mays
.
Plant Soil, 239(1):103-111.
[2] Ait Ali, N., Bernal, M.P., Ater, M., 2004. Tolerance and bioaccumulation of cadmium by
Phragmites australis grown in the presence of elevated concentrations of cadmium, copper, and zinc.
Aquat Bot, 80(3):163-176.
[3] Ali, M.B., Vajpayee, P., Tripathi, R.D., 2003. Phytoremediation of lead, nickel, and copper by
Salix acmophylla Boiss.: role of antioxidant enzymes and antioxidant substances.
Bull Environ Contam Toxicol, 70(3):462-469.
[4] Arduini, I., Ercoli, L., Mariotti, M., 2006. Response of miscanthus to toxic cadmium applications during the period of maximum growth.
Environ Exp Bot, 55(1-2):29-40.
[5] Baud, D.R., Pezeshki, S.R., 2011. Root porosity changes in
Salix nigra cuttings in response to copper and ultraviolet-B radiation exposure.
Water Air Soil Pollut, 221(1-4):99-105.
[6] Borghi, M., Tognetti, R., Monteforti, G., 2007. Responses of
Populus×
euramericana (
P. deltoides×
P. nigra) clone
Adda to increasing copper concentrations.
Environ Exp Bot, 61(1):66-73.
[7] Borghi, M., Tognetti, R., Monteforti, G., 2008. Responses of two poplar species (
Populus alba and
Populus×canadensis) to high copper concentrations.
Environ Exp Bot, 62(3):290-299.
[8] Castiglione, S., Todeschini, V., Franchin, C., 2009. Clonal differences in survival capacity, copper and zinc accumulation, and correlation with leaf polyamine levels in poplar: a large-scale field trial on heavily polluted soil.
Environ Pollut, 157(7):2108-2117.
[9] Colzi, I., Doumett, S., Del Bubba, M., 2011. On the role of the cell wall in the phenomenon of copper tolerance in
Silene paradoxa L.
Environ Exp Bot, 72(1):77-83.
[10] Cosio, C., Vollenweider, P., Keller, C., 2006. Localization and effects of cadmium in leaves of a cadmium-tolerant willow (
Salix viminalis L.): I. Macrolocalization and phytotoxic effects of cadmium.
Environ Exp Bot, 58(1-3):64-74.
[11] Dauthieu, M., Denaix, L., Nguyen, C., 2009. Cadmium uptake and distribution in
Arabidopsis thaliana exposed to low chronic concentrations depends on plant growth.
Plant Soil, 322(1-2):239-249.
[12] Deng, D.M., Shu, W.S., Zhang, J., 2007. Zinc and cadmium accumulation and tolerance in populations of
Sedum alfredii
.
Environ Pollut, 147(2):381-386.
[13] Disante, K.B., Fuentes, D., Cortina, J., 2010. Sensitivity to zinc of Mediterranean woody species important for restoration.
Sci Total Environ, 408(10):2216-2225.
[14] Dos Santos Utmazian, M.N., Wieshammer, G., Vega, R., 2007. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars.
Environ Pollut, 148(1):155-165.
[15] Guerra, F., Duplessis, S., Kohler, A., 2009. Gene expression analysis of
Populus deltoides roots subjected to copper stress.
Environ Exp Bot, 67(2):335-344.
[16] Karp, A., Hanley, S.J., Trybush, S.O., 2011. Genetic improvement of willow for bioenergy and biofuelsfree access.
J Integr Plant Biol, 53(2):151-165.
[17] Komrek, M., Vaněk, A., Mrnka, L., 2010. Potential and drawbacks of EDDS-enhanced phytoextraction of copper from contaminated soils.
Environ Pollut, 158(7):2428-2438.
[18] Kopponen, P., Utriainen, M., Lukkari, K., 2001. Clonal differences in copper and zinc tolerance of birch in metal-supplemented soils.
Environ Pollut, 112(1):89-97.
[19] Kuzovkina, Y.A., Quigley, M.F., 2005. Willows beyond wetlands: uses of
Salix L. species for environmental projects.
Water Air Soil Pollut, 162(1-4):183-204.
[20] Kuzovkina, Y.A., Volk, T.A., 2009. The characterization of willow (
Salix L.) varieties for use in ecological engineering applications: co-ordination of structure, function and autecology.
Ecol Eng, 35(8):1178-1189.
[21] Kuzovkina, Y.A., Knee, M., Quigley, M.F., 2004. Cadmium and copper uptake and translocation in five willow (
Salix L.) species.
Int J Phytoremediat, 6(3):269-287.
[22] Licht, L.A., Isebrands, J.G., 2005. Linking phytoremediated pollutant removal to biomass economic opportunities.
Biomass Bioenerg, 28(2):203-218.
[23] Lpez-Gonzlvez, A., Probanza, A., Galli, V., 1999. Tolerance of some mediterranean crops to copper and zinc: implications in toxic metal clean up.
Chem Ecol, 16(4):297-316.
[24] Lu, L., Tian, S., Yang, X., 2013. Improved cadmium uptake and accumulation in the hyperaccumulator
Sedum alfredii: the impact of citric acid and tartaric acid.
J Zhejiang Univ-Sci B (Biomed & Biotechnol), 14(2):106-114.
[25] Maxted, A.P., Black, C.R., West, H.M., 2007. Phytoextraction of cadmium and zinc by
Salix from soil historically amended with sewage sludge.
Plant Soil, 290(1-2):157-172.
[26] Mirck, J., Isebrands, J.G., Verwijst, T., 2005. Development of short-rotation willow coppice systems for environmental purposes in Sweden.
Biomass Bioenerg, 28(2):219-228.
[27] Mleczek, M., Kaczmarek, Z., Magdziak, Z., 2010. Hydroponic estimation of heavy metal accumulation by different genotypes of
Salix
.
J Environ Sci Health A: Tox Hazard Subst Environ Eng, 45(5):569-578.
[28] Monni, S., Salemaa, M., Millar, N., 2000. The tolerance of
Empetrum nigrum to copper and nickel.
Environ Pollut, 109(2):221-229.
[29] Paschke, M.W., Perry, L.G., Redente, E.F., 2006. Zinc toxicity thresholds for reclamation forb species.
Water Air Soil Pollut, 170(1-4):317-330.
[30] Punshon, T., Dickinson, N.M., 1997. Acclimation of
Salix to metal stress.
New Phytol, 137(2):303-314.
[31] Punshon, T., Lepp, N.W., Dickinson, N.M., 1995. Resistance to copper toxicity in some British willows.
J Geochem Explor, 52(1-2):259-266.
[32] Purdy, J.J., Smart, L.B., 2008. Hydroponic screening of shrub willow (
Salix spp.) for arsenic tolerance and uptake.
Int J Phytoremediat, 10(6):515-528.
[33] Rockwood, D.L., Naidu, C.V., Carter, D.R., 2004. Short-rotation woody crops and phytoremediation: opportunities for agroforestry?.
Agroforest Syst, 61-62(1-3):51-63.
[34] Sahi, S.V., Israr, M., Srivastava, A.K., 2007. Accumulation, speciation and cellular localization of copper in
Sesbania drummondii
.
Chemosphere, 67(11):2257-2266.
[35] Salemaa, M., Monni, S., 2003. Copper resistance of the evergreen dwarf shrub
Arctostaphylos uva-ursi: an experimental exposure.
Environ Pollut, 126(3):435-443.
[36] Tanhan, P., Kruatrachue, M., Pokethitiyook, P., 2007. Uptake and accumulation of cadmium, lead and zinc by Siam weed [
Chromolaena odorata (L.) King & Robinson].
Chemosphere, 68(2):323-329.
[37] Turchi, A., Tamantini, I., Camussi, A.M., 2012. Expression of a metallothionein A1 gene of
Pisum sativum in white poplar enhances tolerance and accumulation of zinc and copper.
Plant Sci, 183:50-56.
[38] Vangronsveld, J., Herzig, R., Weyens, N., 2009. Phytoremediation of contaminated soils and groundwater: lessons from the field.
Environ Sci Pollut Res, 16(7):765-794.
[39] Wang, Y., Greger, M., 2004. Clonal differences in mercury tolerance, accumulation, and distribution in willow.
J Environ Qual, 33(5):1779-1785.
[40] Watson, C., Pulford, I.D., Riddell-Black, D., 1999. Heavy metal toxicity responses of two willow (
Salix) varieties grown hydroponically: development of a tolerance screening test.
Environ Geochem Health, 21(4):359-364.
[41] Watson, C., Pulford, I.D., Riddell-Black, D., 2003. Development of a hydroponic screening technique to assess heavy metal resistance in willow (
Salix).
Int J Phytoremediat, 5(4):333-349.
[42] Weng, G., Wu, L., Wang, Z., 2005. Copper uptake by four
Elsholtzia ecotypes supplied with varying levels of copper in solution culture.
Environ Int, 31(6):880-884.
[43] Wieshammer, G., Unterbrunner, R., Garca, T.B., 2007. Phytoextraction of Cd and Zn from agricultural soils by
Salix ssp. and intercropping of
Salix caprea and
Arabidopsis halleri
.
Plant Soil, 298(1-2):255-264.
[44] Xing, Y., Peng, H., Li, X., 2012. Extraction and isolation of the salidroside-type metabolite from zinc (Zn) and cadmium (Cd) hyperaccumulator
Sedum alfredii Hance.
J Zhejiang Univ-Sci B (Biomed & Biotechnol), 13(10):839-845.
[45] Yan, Y.P., He, J.Y., Zhu, C., 2006. Accumulation of copper in brown rice and effect of copper on rice growth and grain yield in different rice cultivars.
Chemosphere, 65(10):1690-1696.
[46] Zacchini, M., Pietrini, F., Mugnozza, G.S., 2009. Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics.
Water Air Soil Pollut, 197(1-4):23-34.
[47] Zalesny, J.A., Zalesny, R.S., Wiese, A.H., 2007. Choosing tree genotypes for phytoremediation of landfill leachate using phyto-recurrent selection.
Int J Phytoremediat, 9(6):513-530.
[48] Zalesny, R.S., Bauer, E.O., 2007. Evaluation of
Populus and
Salix continuously irrigated with landfill leachate I. genotype-specific elemental phytoremediation.
Int J Phytoremediat, 9(4):281-306.
[49] Zalesny, R.S., Bauer, E.O., 2007. Selecting and utilizing
Populus and
Salix for landfill covers: implications for leachate irrigation.
Int J Phytoremediat, 9(6):497-511.
[50] Zhivotovsky, O.P., Kuzovkina, J.A., Schulthess, C.P., 2010. Hydroponic screening of willows (
Salix L.) for lead tolerance and accumulation.
Int J Phytoremediat, 13(1):75-94.
Open peer comments: Debate/Discuss/Question/Opinion
<1>