Full Text:   <1159>

Summary:  <453>

Suppl. Mater.: 

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2022-06-08

Cited: 0

Clicked: 1479

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Weidi ZHANG

https://orcid.org/0000-0002-6047-4916

Wenzhi REN

https://orcid.org/0000-0001-7052-4967

Wei GAO

https://orcid.org/0000-0001-8093-0555

Bao YUAN

https://orcid.org/0000-0003-3490-0755

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2022 Vol.23 No.6 P.502-514

http://doi.org/10.1631/jzus.B2101052


LncRNA-m18as1 competitively binds with miR-18a-5p to regulate follicle-stimulating hormone secretion through the Smad2/3 pathway in rat primary pituitary cells


Author(s):  Weidi ZHANG, Wenzhi REN, Dongxu HAN, Guokun ZHAO, Haoqi WANG, Haixiang GUO, Yi ZHENG, Zhonghao JI, Wei GAO, Bao YUAN

Affiliation(s):  Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; more

Corresponding email(s):   gaowei81@jlu.edu.cn, yuan_bao@jlu.edu.cn

Key Words:  Long noncoding RNA (lncRNA), MicroRNA (miRNA), Competitive endogenous RNA (ceRNA), Follicle-stimulating hormone (FSH), Mothers against decapentaplegic homolog 2/3 (Smad2/3)


Weidi ZHANG, Wenzhi REN, Dongxu HAN, Guokun ZHAO, Haoqi WANG, Haixiang GUO, Yi ZHENG, Zhonghao JI, Wei GAO, Bao YUAN. LncRNA-m18as1 competitively binds with miR-18a-5p to regulate follicle-stimulating hormone secretion through the Smad2/3 pathway in rat primary pituitary cells[J]. Journal of Zhejiang University Science B, 2022, 23(6): 502-514.

@article{title="LncRNA-m18as1 competitively binds with miR-18a-5p to regulate follicle-stimulating hormone secretion through the Smad2/3 pathway in rat primary pituitary cells",
author="Weidi ZHANG, Wenzhi REN, Dongxu HAN, Guokun ZHAO, Haoqi WANG, Haixiang GUO, Yi ZHENG, Zhonghao JI, Wei GAO, Bao YUAN",
journal="Journal of Zhejiang University Science B",
volume="23",
number="6",
pages="502-514",
year="2022",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2101052"
}

%0 Journal Article
%T LncRNA-m18as1 competitively binds with miR-18a-5p to regulate follicle-stimulating hormone secretion through the Smad2/3 pathway in rat primary pituitary cells
%A Weidi ZHANG
%A Wenzhi REN
%A Dongxu HAN
%A Guokun ZHAO
%A Haoqi WANG
%A Haixiang GUO
%A Yi ZHENG
%A Zhonghao JI
%A Wei GAO
%A Bao YUAN
%J Journal of Zhejiang University SCIENCE B
%V 23
%N 6
%P 502-514
%@ 1673-1581
%D 2022
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2101052

TY - JOUR
T1 - LncRNA-m18as1 competitively binds with miR-18a-5p to regulate follicle-stimulating hormone secretion through the Smad2/3 pathway in rat primary pituitary cells
A1 - Weidi ZHANG
A1 - Wenzhi REN
A1 - Dongxu HAN
A1 - Guokun ZHAO
A1 - Haoqi WANG
A1 - Haixiang GUO
A1 - Yi ZHENG
A1 - Zhonghao JI
A1 - Wei GAO
A1 - Bao YUAN
J0 - Journal of Zhejiang University Science B
VL - 23
IS - 6
SP - 502
EP - 514
%@ 1673-1581
Y1 - 2022
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2101052


Abstract: 
Long noncoding RNAs (lncRNAs) are expressed in different species and different tissues, and perform different functions, but little is known about their involvement in the synthesis or secretion of follicle-stimulating hormone (FSH). In general, we have revealed lncRNA‍‒‍microRNA (miRNA)‍‒‍‍messenger RNA (mRNA) interactions that may play important roles in rat primary pituitary cells. In this study, a new lncRNA was identified for the first time. First, we analyzed the gene expression of lncRNA-m18as1 in different tissues and different stages by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and observed the localization of lncRNA-m18as1 with fluorescence in situ hybridization, which indicated that this lncRNA was distributed mainly in the cytoplasm. Next, we used RT-qPCR and enzyme-linked immunosorbent assay (ELISA) to analyze the regulation of FSH synthesis and secretion after overexpression or knockdown of lncRNA-m18as1 and found that lncRNA-m18as1 was positively correlated with FSH synthesis and secretion. In addition, mothers against decapentaplegic homolog 2 (Smad2) was highly expressed in our sequencing results. We also screened miR-18a-5p from our sequencing results as a miRNA that may bind to lncRNA-m18as1 and Smad2. We used RNA immunoprecipitation-qPCR (RIP-qPCR) and/or dual luciferase assays to confirm that lncRNA-m18as1 interacted with miR-18a-5p and miR-18a-5p interacted with Smad2. Fluorescence in situ hybridization (FISH) showed that lncRNA-m18as1 and miR-18a-5p were localized mainly in the cytoplasm. Finally, we determined the relationship among lncRNA-m18as1, miR-18a-5p, and the Smad2/3 pathway. Overall, we found that lncRNA-m18as1 acts as a molecular sponge of miR-18a-5p to regulate the synthesis and secretion of FSH through the Smad2/3 pathway.

LncRNA-m18as1竞争性结合miR-18a-5p通过Smad2/3通路调控大鼠原代腺垂体细胞FSH分泌

张卫迪1,任文陟2,韩东旭1,赵国坤1,王皓琪1,郭海祥1,郑毅1,冀中豪1,高巍1,袁宝2
1吉林大学动物科学学院,实验动物系,中国长春市,130062
2吉林大学吉林省模型动物工程研究中心,中国长春市,130062
目的:探索长链非编码RNA(lncRNA)-微小RNA(miRNA)-信使RNA(mRNA)网络对促卵泡素(FSH)合成与分泌的作用,为调控FSH的分子机制提供理论基础。
创新点:筛选出了一个新的lncRNA作为研究对象;首次鉴定并分析了该lncRNA对FSH合成与分泌的调控作用;确定了该lncRNA调控FSH合成与分泌的机制。
方法:我们通过逆转录定量聚合酶链反应(RT-qPCR)筛选出了一个新的lncRNA,并根据功能将其最终命名为lncRNA-m18as1。经过敲降或过表达lncRNA-m18as1后,我们采用RT-qPCR与酶联免疫吸附剂测定(ELISA)分析了lncRNA-m18as1对FshβmRNA以及FSH分泌的调控作用。我们预测并确定了lncRNA-m18as1发挥作用的lncRNAm18as1/miR-18a-5p/Smad2轴。我们使用RNA结合蛋白免疫沉淀测定-逆转录定量聚合酶链反应(RIP-qPCR)和/或双荧光素酶报告分析方法分析了miR-18a-5p与lncRNA-m18as1、Smad2的靶向关系。此外,我们使用RT-qPCR和蛋白质印迹法(western blot)分析了lncRNA-m18as1和miR-18a-5p在轴中对向下游因子的调控作用,同时通过荧光原位杂交技术(FISH)观察了lncRNA-m18as1以及miR-18a-5p在细胞核与细胞质中的分布。
结论:研究结果表明在大鼠腺垂体中高表达且阶段性表达的lncRNA-m18as1促进FshβmRNA的表达与FSH的分泌。进一步的分子机制研究表明lncRNA-m18as1竞争性结合miR-18a-5p调控Smad2蛋白的表达,进而调控FSH的合成与分泌。

关键词:长链非编码RNA(lncRNA);微小RNA(miRNA);竞争性内源RNA(ceRNA);促卵泡素(FSH);Smad家族成员2/3(Smad2/3)

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Acevedo-RodriguezA, KauffmanAS, CherringtonBD, et al., 2018. Emerging insights into hypothalamic-pituitary-gonadal axis regulation and interaction with stress signalling. J Neuroendocrinol, 30(10):e12590.

[2]AhmedK, LaPierreMP, GasserE, et al., 2017. Loss of microRNA-7a2 induces hypogonadotropic hypogonadism and infertility. J Clin Invest, 127(3):1061-1074.

[3]ArjunanP, GnanaprakasamJP, AnanthS, et al., 2016. Increased retinal expression of the pro-angiogenic receptor GPR91 via BMP6 in a mouse model of juvenile hemochromatosis. Invest Ophthalmol Vis Sci, 57(4):1612-1619.

[4]BernardDJ, 2004. Both SMAD2 and SMAD3 mediate activin-stimulated expression of the follicle-stimulating hormone β subunit in mouse gonadotrope cells. Mol Endocrinol, 18(3):606-623.

[5]BhaskaranM, MohanM, 2014. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet Pathol, 51(4):759-774.

[6]BridgesMC, DaulagalaAC, KourtidisA, 2021. LNCcation: lncRNA localization and function. J Cell Biol, 220(2):e202009045.

[7]CaoHL, LiuZJ, HuangPL, et al., 2019. lncRNA-RMRP promotes proliferation, migration and invasion of bladder cancer via miR-206. Eur Rev Med Pharmacol Sci, 23(3):1012-1021.

[8]CesanaM, CacchiarelliD, LegniniI, et al., 2011. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 147(2):358-369.

[9]ChanJJ, TayY, 2018. Noncoding RNA: RNA regulatory networks in cancer. Int J Mol Sci, 19(5):1310.

[10]ChenYF, LiYJ, ChouCH, et al., 2020. Control of matrix stiffness promotes endodermal lineage specification by regulating SMAD2/3 via lncRNA LINC00458. Sci Adv, 6(6):eaay0264.

[11]CiprianoA, BallarinoM, 2018. The ever-evolving concept of the gene: the use of RNA/protein experimental techniques to understand genome functions. Front Mol Biosci, 5:20.

[12]CossD, JacobsSBR, BenderCE, et al., 2004. A novel AP-1 site is critical for maximal induction of the follicle-stimulating hormone β gene by gonadotropin-releasing hormone. J Biol Chem, 279(1):152-162.

[13]DewaillyD, RobinG, PeigneM, et al., 2016. Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update, 22(6):709-724.

[14]FaghihiMA, ModarresiF, KhalilAM, et al., 2008. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of β‍-secretase. Nat Med, 14(7):723-730.

[15]FujiiY, OkadaY, MooreJP, et al., 2002. Evidence that PACAP and GnRH down-regulate follicle-stimulating hormone-‍βmRNA levels by stimulating follistatin gene expression: effects on folliculostellate cells, gonadotrophs and LβT2 gonadotroph cells. Mol Cell Endocrinol, 192(1-2):55-64.

[16]GaoYL, ZhaoZS, ZhangMY, et al., 2017. Long noncoding RNA PVT1 facilitates cervical cancer progression via negative regulating of miR-424. Oncol Res Featur Preclin Clin Cancer Ther, 25(8):1391-1398.

[17]GarrelG, SimonV, ThieulantML, et al., 2010. Sustained gonadotropin-releasing hormone stimulation mobilizes the cAMP/PKA pathway to induce nitric oxide synthase type 1 expression in rat pituitary cells in vitro and in vivo at proestrus. Biol Reprod, 82(6):1170-1179.

[18]GeorgeJW, DilleEA, HeckertLL, 2011. Current concepts of follicle-stimulating hormone receptor gene regulation. Biol Reprod, 84(1):7-17.

[19]GiraldezAJ, MishimaY, RihelJ, et al., 2006. Zebrafish miR-430 promotes deadenylation and clearance of maternal mRNAs. Science, 312(5770):75-79.

[20]HanDX, SunXL, FuY, et al., 2017a. Identification of long non-coding RNAs in the immature and mature rat anterior pituitary. Sci Rep, 7:17780.

[21]HanDX, SunXL, XuMQ, et al., 2017b. Roles of differential expression of microRNA-21-3p and microRNA-433 in FSH regulation in rat anterior pituitary cells. Oncotarget, 8(22):36553-36565.

[22]HeckertL, GriswoldMD, 1993. Expression of the FSH receptor in the testis. In: Bardin CW (Ed.), Recent Progress in Hormone Research. Academic Press, Manhattan, p.61-77.

[23]HuGZ, LouZK, GuptaM, 2014. The long non-coding RNA GAS5 cooperates with the eukaryotic translation initiation factor 4E to regulate c-Myc translation. PLoS ONE, 9(9):e107016.

[24]JiangW, LiuYT, LiuR, et al., 2015. The lncRNA DEANR1 facilitates human endoderm differentiation by activating FOXA2 expression. Cell Rep, 11(1):137-148.

[25]KanasakiH, PurwanaIN, MijiddorjT, et al., 2012. Effects of estradiol and progesterone on gonadotropin LHβ‍- and FSHβ‍-subunit promoter activities in gonadotroph LβT2 cells. Neuro Endocrinol Lett, 33(6):608-613.

[26]KapraraA, HuhtaniemiIT, 2018. The hypothalamus-pituitary-gonad axis: tales of mice and men. Metabolism, 86:3-17.

[27]KrolJ, LoedigeI, FilipowiczW, 2010. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet, 11(9):597-610.

[28]KumarTR, 2018. Extragonadal actions of FSH: a critical need for novel genetic models. Endocrinology, 159(1):2-8.

[29]LambaP, FortinJ, TranS, et al., 2009. A novel role for the forkhead transcription factor FOXL2 in activin A-regulated follicle-stimulating hormone β subunit transcription. Mol Endocrinol, 23(7):1001-1013.

[30]LannesJ, L'hôteD, Fernandez-VegaA, et al., 2016. A regulatory loop between miR-132 and miR-125b involved in gonadotrope cells desensitization to GnRH. Sci Rep, 6:34676.

[31]LeiKC, LiangX, GaoYW, et al., 2017. Lnc-ATB contributes to gastric cancer growth through a miR-141-3p/TGFβ2 feedback loop. Biochem Biophys Res Commun, 484(3):514-521.

[32]LiM, DuanLW, LiYX, et al., 2019. Long noncoding RNA/circular noncoding RNA-miRNA-mRNA axes in cardiovascular diseases. Life Sci, 233:116440.

[33]LiuXM, HuangSS, GuanY, et al., 2020. Long noncoding RNA OSER1-AS1 promotes the malignant properties of non-small cell lung cancer by sponging microRNA-433-3p and thereby increasing Smad2 expression. Oncol Rep, 44(2):599-610.

[34]LongH, WangX, ChenYJ, et al., 2018. Dysregulation of microRNAs in autoimmune diseases: pathogenesis, biomarkers and potential therapeutic targets. Cancer Lett, 428:90-103.

[35]MaLN, BajicVB, ZhangZ, 2013. On the classification of long non-coding RNAs. RNA Biol, 10(6):925-933.

[36]MarshallJC, KelchRP, 1986. Gonadotropin-releasing hormone: role of pulsatile secretion in the regulation of reproduction. N Engl J Med, 315(23):1459-1468.

[37]MassagueJ, SeoaneJ, WottonD, 2005. Smad transcription factors. Genes Dev, 19(23):2783-2810.

[38]MottaJCL, MadureiraG, SilvaLO, et al., 2020. Interactions of circulating estradiol and progesterone on changes in endometrial area and pituitary responsiveness to GnRH. Biol Reprod, 103(3):643-653.

[39]NohJH, KimKM, McCluskyWG, et al., 2018. Cytoplasmic functions of long noncoding RNAs. WIREs RNA, 9(3):e1471.

[40]PengWZ, SiS, ZhangQX, et al., 2015. Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate gastric cancer progression. J Exp Clin Cancer Res, 34:79.

[41]PierceJG, ParsonsTF, 1981. Glycoprotein hormones: structure and function. Annu Rev Biochem, 50:465-495.

[42]PopovicsP, RekasiZ, StewartAJ, et al., 2011. Regulation of pituitary inhibin/activin subunits and follistatin gene expression by GnRH in female rats. J Endocrinol, 210(1):71-79.

[43]RansohoffJD, WeiYN, KhavariPA, 2018. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol, 19(3):143-157.

[44]SalmenaL, PolisenoL, TayY, et al., 2011. A ceRNA hypothesis: the rosetta stone of a hidden RNA language? Cell, 146(3):353-358.

[45]SantiD, CrepieuxP, ReiterE, et al., 2020. Follicle-stimulating hormone (FSH) action on spermatogenesis: a focus on physiological and therapeutic roles. J Clin Med, 9(4):1014.

[46]SchubertM, Pérez LanuzaL, GromollJ, 2019. Pharmacogenetics of FSH action in the male. Front Endocrinol, 10:47.

[47]StamatiadesGA, CarrollRS, KaiserUB, 2019. GnRH—a key regulator of FSH. Endocrinology, 160(1):57-67.

[48]StilleyJAW, SegaloffDL, 2018. FSH actions and pregnancy: looking beyond ovarian FSH receptors. Endocrinology, 159(12):4033-4042.

[49]SunY, LiuWZ, LiuT, et al., 2015. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Sig Transd, 35(6):600-604.

[50]TsutsumiR, MistryD, WebsterNJG, 2010. Signaling responses to pulsatile gonadotropin-releasing hormone in LβT2 gonadotrope cells. J Biol Chem, 285(26):‍20262-20272.

[51]WangLM, SongFB, ZhuWB, et al., 2021. The stage-specific long non-coding RNAs and mRNAs identification and analysis during early development of common carp, Cyprinus carpio. Genomics, 113(1):20-28.

[52]WangLY, ChoKB, LiY, et al., 2019. Long noncoding RNA (lncRNA)‍‍-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int J Mol Sci, 20(22):5758.

[53]XuJ, WuKJ, JiaQJ, et al., 2020. Roles of miRNA and lncRNA in triple-negative breast cancer. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(9):673-689.

[54]YuH, LiSB, 2020. Role of LINC00152 in non-small cell lung cancer. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 21(3):179-191.

[55]ZhaoFL, WuY, YangW, et al., 2020. Inhibition of vascular calcification by microRNA-155-5p is accompanied by the inactivation of TGF-β1/Smad2/3 signaling pathway. Acta Histochem, 122:151551.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE