Full Text:   <129>

Summary:  <67>

CLC number: 

On-line Access: 2025-02-26

Received: 2023-08-29

Revision Accepted: 2024-01-16

Crosschecked: 2025-02-27

Cited: 0

Clicked: 200

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yu YUAN

https://orcid.org/0000-0003-1032-6330

Shihua ZHANG

https://orcid.org/0000-0001-5429-0443

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2025 Vol.26 No.2 P.107-123

http://doi.org/10.1631/jzus.B2300607


Roles of lncRNA in the crosstalk between osteogenesis and angiogenesis in the bone microenvironment


Author(s):  Shihua ZHANG, Jianmin GUO, Yuting HE, Zhi'ang SU, Yao FENG, Lan ZHANG, Jun ZOU, Xiquan WENG, Yu YUAN

Affiliation(s):  School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; more

Corresponding email(s):   yuanyumail@126.com, wengxq@gzsport.edu.cn

Key Words:  Long noncoding RNA (lncRNA), Osteogenesis, Bone angiogenesis, Osteoporosis, Bone microenvironment


Share this article to: More |Next Article >>>

Shihua ZHANG, Jianmin GUO, Yuting HE, Zhi'ang SU, Yao FENG, Lan ZHANG, Jun ZOU, Xiquan WENG, Yu YUAN. Roles of lncRNA in the crosstalk between osteogenesis and angiogenesis in the bone microenvironment[J]. Journal of Zhejiang University Science B, 2025, 26(2): 107-123.

@article{title="Roles of lncRNA in the crosstalk between osteogenesis and angiogenesis in the bone microenvironment",
author="Shihua ZHANG, Jianmin GUO, Yuting HE, Zhi'ang SU, Yao FENG, Lan ZHANG, Jun ZOU, Xiquan WENG, Yu YUAN",
journal="Journal of Zhejiang University Science B",
volume="26",
number="2",
pages="107-123",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2300607"
}

%0 Journal Article
%T Roles of lncRNA in the crosstalk between osteogenesis and angiogenesis in the bone microenvironment
%A Shihua ZHANG
%A Jianmin GUO
%A Yuting HE
%A Zhi'ang SU
%A Yao FENG
%A Lan ZHANG
%A Jun ZOU
%A Xiquan WENG
%A Yu YUAN
%J Journal of Zhejiang University SCIENCE B
%V 26
%N 2
%P 107-123
%@ 1673-1581
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2300607

TY - JOUR
T1 - Roles of lncRNA in the crosstalk between osteogenesis and angiogenesis in the bone microenvironment
A1 - Shihua ZHANG
A1 - Jianmin GUO
A1 - Yuting HE
A1 - Zhi'ang SU
A1 - Yao FENG
A1 - Lan ZHANG
A1 - Jun ZOU
A1 - Xiquan WENG
A1 - Yu YUAN
J0 - Journal of Zhejiang University Science B
VL - 26
IS - 2
SP - 107
EP - 123
%@ 1673-1581
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2300607


Abstract: 
Bone is a highly calcified and vascularized tissue. The vascular system plays a vital role in supporting bone growth and repair, such as the provision of nutrients, growth factors, and metabolic waste transfer. Moreover, the additional functions of the bone vasculature, such as the secretion of various factors and the regulation of bone-related signaling pathways, are essential for maintaining bone health. In the bone microenvironment, bone tissue cells play a critical role in regulating angiogenesis, including osteoblasts, bone marrow mesenchymal stem cells (BMSCs), and osteoclasts. osteogenesis and bone angiogenesis are closely linked. The decrease in osteogenesis and bone angiogenesis caused by aging leads to osteoporosis. Long noncoding RNAs (lncRNAs) are involved in various physiological processes, including osteogenesis and angiogenesis. Recent studies have shown that lncRNAs could mediate the crosstalk between angiogenesis and osteogenesis. However, the mechanism by which lncRNAs regulate angiogenesis‒osteogenesis crosstalk remains unclear. In this review, we describe in detail the ways in which lncRNAs regulate the crosstalk between osteogenesis and angiogenesis to promote bone health, aiming to provide new directions for the study of the mechanism by which lncRNAs regulate bone metabolism.

LncRNA对骨微环境中的骨生成和血管生成耦联的作用

张士花1,3,郭健民2,何玉婷1,苏志昂1,冯瑶1,章岚3,邹军4,翁锡全1,元宇1
1广州体育学院运动与健康学院,中国广州市,510500
2南方科技大学生命科学学院,中国深圳市,518055
3山东体育学院运动与健康学院,中国济南市,250102
4上海体育大学运动与健康学院,中国上海市,200438
摘要:骨骼是一种高度钙化和血管化的组织。血管系统在支持骨骼生长和修复方面发挥着重要作用,如提供营养和生长因子以及转移代谢废物。此外,骨血管的其他功能,如分泌各种因子和调节骨相关信号通路,对骨骼健康的维持同样有着不可或缺的作用。在骨微环境中,骨髓间充质干细胞(BMSCs)、成骨细胞及破骨细胞等骨组织细胞在血管生成的调控中发挥着关键作用。骨生成和骨血管生成密切相关。衰老导致骨生成和骨血管生成能力减弱,从而诱发骨质疏松症。长链非编码RNA(lncRNA)能够参与骨生成和血管生成等多种生理过程的调控。最近的研究表明,lncRNA可介导血管生成和骨生成之间的耦联,但其具体的机制仍不清楚。这篇综述描述了lncRNA如何调控成骨与血管生成之间的耦联以促进骨骼健康,旨在为lncRNA调控骨代谢机制的研究提供新的方向。

关键词:长链非编码RNA(lncRNA);骨生成;骨血管生成;骨质疏松;骨微环境

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AlagiakrishnanK, JubyA, HanleyD, et al., 2003. Role of vascular factors in osteoporosis. J Gerontol Ser A, 58(4):M362-M366.

[2]AllasL, BoumédieneK, BaugéC, 2019. Epigenetic dynamic during endochondral ossification and articular cartilage development. Bone, 120:523-532.

[3]ApteRS, ChenDS, FerraraN, 2019. VEGF in signaling and disease: beyond discovery and development. Cell, 176(6):1248-1264.

[4]AsaharaT, TakahashiT, MasudaH, et al., 1999. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J, 18(14):3964-3972.

[5]AshrafS, WalshDA, 2008. Angiogenesis in osteoarthritis. Curr Opin Rheumatol, 20(5):573-580.

[6]AshrafS, MappPI, WalshDA, 2011. Contributions of angiogenesis to inflammation, joint damage, and pain in a rat model of osteoarthritis. Arthritis Rheum, 63(9):2700-2710.

[7]AtesokK, LiR, StewartDJ, et al., 2010. Endothelial progenitor cells promote fracture healing in a segmental bone defect model. J Orthop Res, 28(8):1007-1014.

[8]BahneyCS, ZondervanRL, AllisonP, et al., 2019. Cellular biology of fracture healing. J Orthop Res, 37(1):35-50.

[9]BaiY, GongXS, DongR, et al., 2022. Long non-coding RNA HCAR promotes endochondral bone repair by upregulating VEGF and MMP13 in hypertrophic chondrocyte through sponging miR-15b-5p. Genes Dis, 9(2):456-465.

[10]BakerCE, Moore-LotridgeSN, HysongAA, et al., 2018. Bone fracture acute phase response—a unifying theory of fracture repair: clinical and scientific implications. Clin Rev Bone Miner Metab, 16(4):142-158.

[11]BartelDP, 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2):281-297.

[12]BatesBD, GodboutC, RamnaraignDJ, et al., 2017. Delayed endothelial progenitor cell therapy promotes bone defect repair in a clinically relevant rat model. Stem Cells Int, 2017:7923826.

[13]BeheraJ, KumarA, VoorMJ, et al., 2021. Exosomal lncRNA-H19 promotes osteogenesis and angiogenesis through mediating Angpt1/Tie2-NO signaling in CBS-heterozygous mice. Theranostics, 11(16):7715-7734.

[14]BellaviaD, de LucaA, CarinaV, et al., 2019. Deregulated miRNAs in bone health: epigenetic roles in osteoporosis. Bone, 122:52-75.

[15]ByunMR, KimAR, HwangJH, et al., 2014. FGF2 stimulates osteogenic differentiation through ERK induced TAZ expression. Bone, 58:72-80.

[16]CaiNY, LiC, WangFK, 2019. Silencing of lncRNA-ANCR promotes the osteogenesis of osteoblast cells in postmenopausal osteoporosis via targeting EZH2 and RUNX2. Yonsei Med J, 60(8):751-759.

[17]CarmelietP, JainRK, 2011. Molecular mechanisms and clinical applications of angiogenesis. Nature, 473(7347):298-307.

[18]ChangLC, YuYL, 2016. Dietary components as epigenetic-regulating agents against cancer. Biomedicine, 6:2.

[19]ChenK, ZhuH, ZhengMQ, et al., 2021. LncRNA MEG3 inhibits the degradation of the extracellular matrix of chondrocytes in osteoarthritis via targeting miR-93/TGFBR2 axis. Cartilage, 13(2S):1274S-1284S.

[20]ChenS, JiaLF, ZhangS, et al., 2018. DEPTOR regulates osteogenic differentiation via inhibiting MEG3-mediated activation of BMP4 signaling and is involved in osteoporosis. Stem Cell Res Ther, 9:185.

[21]ChenY, TangGQ, QianHB, et al., 2021. LncRNA LOC100129620 promotes osteosarcoma progression through regulating CDK6 expression, tumor angiogenesis, and macrophage polarization. Aging, 13(10):14258-14276.

[22]ChenYX, WuYH, GuoLL, et al., 2023. Exosomal Lnc NEAT1 from endothelial cells promote bone regeneration by regulating macrophage polarization via DDX3X/NLRP3 axis. J Nanobiotechnol, 21:98.

[23]ChimSM, QinA, TicknerJ, et al., 2011. EGFL6 promotes endothelial cell migration and angiogenesis through the activation of extracellular signal-regulated kinase. J Biol Chem, 286(25):22035-22046.

[24]ChimSM, TicknerJ, ChowST, et al., 2013. Angiogenic factors in bone local environment. Cytokine Growth Factor Rev, 24(3):297-310.

[25]ChopraH, HungMK, KwongDL, et al., 2018. Insights into endothelial progenitor cells: origin, classification, potentials, and prospects. Stem Cells Int, 2018:9847015.

[26]Claesson-WelshL, WelshM, 2013. VEGFA and tumour angiogenesis. J Intern Med, 273(2):114-127.

[27]CoultasL, ChawengsaksophakK, RossantJ, 2005. Endothelial cells and VEGF in vascular development. Nature, 438(7070):937-945.

[28]CuiYG, FuSL, SunD, et al., 2019. EPC-derived exosomes promote osteoclastogenesis through LncRNA-MALAT1. J Cell Mol Med, 23(6):3843-3854.

[29]DangwalS, SchimmelK, FoinquinosA, et al., 2017. Noncoding RNAs in heart failure. In: Bauersachs J, Butler J, Sandner P (Eds.), Heart Failure. Springer, Cham, p.423-445.

[30]DingA, LiCH, YuCY, et al., 2021. Long non-coding RNA MALAT1 enhances angiogenesis during bone regeneration by regulating the miR-494/SP1 axis. Lab Invest, 101(11):1458-1466.

[31]DingWG, WeiZX, LiuJB, 2011. Reduced local blood supply to the tibial metaphysis is associated with ovariectomy-induced osteoporosis in mice. Connect Tissue Res, 52(1):25-29.

[32]DirckxN, van HulM, MaesC, 2013. Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration. Birth Defects Res C Embryo Today, 99(3):170-191.

[33]DuretL, ChureauC, SamainS, et al., 2006. The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science, 312(5780):1653-1655.

[34]FengDP, LiZW, YangL, et al., 2022. BMSC-EV-derived lncRNA NORAD facilitates migration, invasion, and angiogenesis in osteosarcoma cells by regulating CREBBP via delivery of miR-877-3p. Oxid Med Cell Longev, 2022:8825784.

[35]FengJ, WangJX, LiCH, 2019. LncRNA GAS5 overexpression alleviates the development of osteoporosis through promoting osteogenic differentiation of MSCs via targeting microRNA-498 to regulate RUNX2. Eur Rev Med Pharmacol Sci, 23(18):7757-7765.

[36]FerraraN, 1999. Molecular and biological properties of vascular endothelial growth factor. J Mol Med, 77(7):527-543.

[37]FerraraN, GerberHP, LecouterJ, 2003. The biology of VEGF and its receptors. Nat Med, 9(6):669-676.

[38]GaoY, XiaoF, WangCL, et al., 2018. Long noncoding RNA MALAT1 promotes osterix expression to regulate osteogenic differentiation by targeting miRNA-143 in human bone marrow-derived mesenchymal stem cells. J Cell Biochem, 119(8):6986-6996.

[39]Ghafouri-FardS, AbakA, Tavakkoli AvvalS, et al., 2021. Contribution of miRNAs and lncRNAs in osteogenesis and related disorders. Biomed Pharmacother, 142:111942.

[40]GrossoA, BurgerMG, LungerA, et al., 2017. It takes two to tango: coupling of angiogenesis and osteogenesis for bone regeneration. Front Bioeng Biotechnol, 5:68.

[41]GrüneboomA, HawwariI, WeidnerD, et al., 2019. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat Metab, 1(2):236-250.

[42]GuoQY, GuoQ, XiaoY, et al., 2020. Regulation of bone marrow mesenchymal stem cell fate by long non-coding RNA. Bone, 141:115617.

[43]HanP, LiW, LinCH, et al., 2014. A long noncoding RNA protects the heart from pathological hypertrophy. Nature, 514(7520):102-106.

[44]HankensonKD, DishowitzM, GrayC, et al., 2011. Angiogenesis in bone regeneration. Injury, 42(6):556-561.

[45]HaradaSI, RodanGA, 2003. Control of osteoblast function and regulation of bone mass. Nature, 423(6937):349-355.

[46]HeCP, JiangXC, ChenC, et al., 2021. The function of lncRNAs in the pathogenesis of osteoarthritis. Bone Joint Res, 10(2):122-133.

[47]HePH, ZhangZJ, HuangGX, et al., 2016. miR-141 modulates osteoblastic cell proliferation by regulating the target gene of lncRNA H19 and lncRNA H19-derived miR-675. Am J Transl Res, 8(4):1780-1788.

[48]HeXN, DziakR, YuanX, et al., 2013. BMP2 genetically engineered MSCs and EPCs promote vascularized bone regeneration in rat critical-sized calvarial bone defects. PLoS ONE, 8(4):e60473.

[49]HenriksenK, KarsdalM, DelaisséJM, et al., 2003. RANKL and vascular endothelial growth factor (VEGF) induce osteoclast chemotaxis through an ERK1/2-dependent mechanism. J Biol Chem, 278(49):48745-48753.

[50]HermanAB, TsitsipatisD, GorospeM, 2022. Integrated lncRNA function upon genomic and epigenomic regulation. Mol Cell, 82(12):2252-2266.

[51]HuangX, WuW, JingDD, et al., 2022. Engineered exosome as targeted lncRNA MEG3 delivery vehicles for osteosarcoma therapy. J Control Release, 343:107-117.

[52]HungIH, SchoenwolfGC, LewandoskiM, et al., 2016. A combined series of Fgf9 and Fgf18 mutant alleles identifies unique and redundant roles in skeletal development. Dev Biol, 411(1):72-84.

[53]JiangYP, WuWL, JiaoGJ, et al., 2019. LncRNA SNHG1 modulates p38 MAPK pathway through Nedd4 and thus inhibits osteogenic differentiation of bone marrow mesenchymal stem cells. Life Sci, 228:208-214.

[54]JingH, LiaoL, SuXX, et al., 2017. Declining histone acetyltransferase GCN5 represses BMSC-mediated angiogenesis during osteoporosis. FASEB J, 31(10):4422-4433.

[55]JulesJ, ZhangP, AshleyJW, et al., 2012. Molecular basis of requirement of receptor activator of nuclear factor κB signaling for interleukin 1-mediated osteoclastogenesis. J Biol Chem, 287(19):15728-15738.

[56]KameiN, AtesokK, OchiM, 2017. The use of endothelial progenitor cells for the regeneration of musculoskeletal and neural tissues. Stem Cells Int, 2017:1960804.

[57]KarrethFA, TayY, PernaD, et al., 2011. In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell, 147(2):382-395.

[58]Kieu NguyenNT, TuY, LeeHS, et al., 2023. Split dCas12a activator for lncRNA H19 activation to enhance BMSC differentiation and promote calvarial bone healing. Biomaterials, 297:122106.

[59]KimDH, MarinovGK, PepkeS, et al., 2015. Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming. Cell Stem Cell, 16(1):88-101.

[60]KimHA, SeoKH, KangYR, et al., 2011. Mechanisms of platelet-activating factor-induced enhancement of VEGF expression. Cell Physiol Biochem, 27(1):55-62.

[61]Krüger-GengeA, BlockiA, FrankeRP, et al., 2019. Vascular endothelial cell biology: an update. Int J Mol Sci, 20(18):4411.

[62]KungJTY, ColognoriD, LeeJT, 2013. Long noncoding RNAs: past, present, and future. Genetics, 193(3):651-669.

[63]KusumbeAP, RamasamySK, AdamsRH, 2014. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature, 507(7492):323-328.

[64]Lafage-ProustMH, PrisbyR, RocheB, et al., 2010. Bone vascularization and remodeling. Joint Bone Spine, 77(6):521-524.

[65]LaschkeMW, GiebelsC, MengerMD, 2011. Vasculogenesis: a new piece of the endometriosis puzzle. Hum Reprod Update, 17(5):628-636.

[66]LiCJ, ChengP, LiangMK, et al., 2015. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Invest, 125(4):1509-1522.

[67]LiMY, CongR, YangLY, et al., 2020. A novel lncRNA LNC_000052 leads to the dysfunction of osteoporotic BMSCs via the miR-96-5p-PIK3R1 axis. Cell Death Dis, 11(9):795.

[68]LiZ, JinCY, ChenS, et al., 2017. Long non-coding RNA MEG3 inhibits adipogenesis and promotes osteogenesis of human adipose-derived mesenchymal stem cells via miR-140-5p. Mol Cell Biochem, 433(1-2):51-60.

[69]LiZX, LuQC, ZhuDY, et al., 2018. Lnc-SNHG1 may promote the progression of non-small cell lung cancer by acting as a sponge of miR-497. Biochem Biophys Res Commun, 506(3):632-640.

[70]LiangSC, RenK, LiBY, et al., 2020. LncRNA SNHG1 alleviates hypoxia-reoxygenation-induced vascular endothelial cell injury as a competing endogenous RNA through the HIF-1α/VEGF signal pathway. Mol Cell Biochem, 465(1-2):1-11.

[71]LiuH, LiuHN, YangQB, et al., 2024. LncRNA SNHG1 enhances cartilage regeneration by modulating chondrogenic differentiation and angiogenesis potentials of JBMMSCs via mitochondrial function regulation. Stem Cell Res Ther, 15:177.

[72]LiuRD, LiZH, SongEH, et al., 2020. LncRNA HOTTIP enhances human osteogenic BMSCs differentiation via interaction with WDR5 and activation of Wnt/β-catenin signalling pathway. Biochem Biophys Res Commun, 524(4):1037-1043.

[73]LuetkeA, MeyersPA, LewisI, et al., 2014. Osteosarcoma treatment—where do we stand? A state of the art review. Cancer Treat Rev, 40(4):523-532.

[74]LuoQX, WangJ, ZhaoWY, et al., 2020. Vasculogenic mimicry in carcinogenesis and clinical applications. J Hematol Oncol, 13:19.

[75]MaQL, MiriZ, HaugenHJ, et al., 2023. Significance of mechanical loading in bone fracture healing, bone regeneration, and vascularization. J Tissue Eng, 14:20417314231172573.

[76]MaesC, 2013. Role and regulation of vascularization processes in endochondral bones. Calcif Tissue Int, 92(4):307-323.

[77]MaesC, KobayashiT, SeligMK, et al., 2010. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell, 19(2):329-344.

[78]MappPI, WalshDA, 2012. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat Rev Rheumatol, 8(7):390-398.

[79]MattickJS, 2018. The state of long non-coding RNA biology. Non-Coding RNA, 4(3):17.

[80]Mayr-WohlfartU, WaltenbergerJ, HausserH, et al., 2002. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone, 30(3):472-477.

[81]MitraR, ChenX, GreenawaltEJ, et al., 2017. Decoding critical long non-coding RNA in ovarian cancer epithelial-to-mesenchymal transition. Nat Commun, 8:1604.

[82]NojimaT, ProudfootNJ, 2022. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat Rev Mol Cell Biol, 23(6):389-406.

[83]NovackDV, TeitelbaumSL, 2008. The osteoclast: friend or foe? Annu Rev Pathol, 3:457-484.

[84]OuyangZX, TanTT, ZhangXH, et al., 2020. LncRNA ENST00000563492 promoting the osteogenesis-angiogenesis coupling process in bone mesenchymal stem cells (BMSCs) by functions as a ceRNA for miR-205-5p. Cell Death Dis, 11(6):486.

[85]PatschanD, SugiartoN, HenzeE, et al., 2018. Early endothelial progenitor cells and vascular stiffness in psoriasis and psoriatic arthritis. Eur J Med Res, 23:56.

[86]PengJ, LaiZG, FangZL, et al., 2014. Dimethyloxalylglycine prevents bone loss in ovariectomized C57BL/6J mice through enhanced angiogenesis and osteogenesis. PLoS ONE, 9(11):e112744.

[87]PotenteM, GerhardtH, CarmelietP, 2011. Basic and therapeutic aspects of angiogenesis. Cell, 146(6):873-887.

[88]QiaoLL, LiangN, ZhangJD, et al., 2015. Advanced research on vasculogenic mimicry in cancer. J Cell Mol Med, 19(2):315-326.

[89]QinYH, ZhangCQ, 2017. Endothelial progenitor cell-derived extracellular vesicle-meditated cell-to-cell communication regulates the proliferation and osteoblastic differentiation of bone mesenchymal stromal cells. Mol Med Rep, 16(5):7018-7024.

[90]RamasamySK, KusumbeAP, WangL, et al., 2014. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature, 507(7492):376-380.

[91]RenK, NiYC, LiXJ, et al., 2019. Expression profiling of long noncoding RNAs associated with vasculogenic mimicry in osteosarcoma. J Cell Biochem, 120(8):12473-12488.

[92]SaranU, Gemini PiperniS, ChatterjeeS, 2014. Role of angiogenesis in bone repair. Arch Biochem Biophys, 561:109-117.

[93]SchipaniE, MaesC, CarmelietG, et al., 2009. Regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF. J Bone Miner Res, 24(8):1347-1353.

[94]ShimizuS, IbaT, NaitoH, et al., 2023. Aging impairs the ability of vascular endothelial stem cells to generate endothelial cells in mice. Angiogenesis, 26(4):567-580.

[95]ShinehG, PatelK, MobarakiM, et al., 2023. Functional approaches in promoting vascularization and angiogenesis in bone critical-sized defects via delivery of cells, growth factors, drugs, and particles. J Funct Biomater, 14(2):99.

[96]SmartF, AschrafiA, AtkinsA, et al., 2007. Two isoforms of the cold-inducible mRNA-binding protein RBM3 localize to dendrites and promote translation. J Neurochem, 101(5):1367-1379.

[97]St. Laurent G, Wahlestedt C, Kapranov P, 2015. The landscape of long noncoding RNA classification. Trends Genet, 31(5):239-251.

[98]SuW, XieW, ShangQK, et al., 2015. The long noncoding RNA MEG3 is downregulated and inversely associated with VEGF levels in osteoarthritis. Biomed Res Int, 2015:356893.

[99]TangZY, GongZM, SunXL, 2018. LncRNA DANCR involved osteolysis after total hip arthroplasty by regulating FOXO1 expression to inhibit osteoblast differentiation. J Biomed Sci, 25:4.

[100]TaoSC, HuangJY, WeiZY, et al., 2020. EWSAT1 acts in concert with exosomes in osteosarcoma progression and tumor-induced angiogenesis: the “double stacking effect”. Adv Biosyst, 4(9):2000152.

[101]TayY, KatsL, SalmenaL, et al., 2011. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell, 147(2):344-357.

[102]TengZW, ZhuY, HaoQG, et al., 2021. Long non-coding RNA taurine upregulated gene 1 is downregulated in osteoporosis and influences the osteogenic differentiation of bone marrow mesenchymal stem cells. Peer J, 9:e11251.

[103]TianT, QiuR, QiuX, 2018. SNHG1 promotes cell proliferation by acting as a sponge of miR-145 in colorectal cancer. Oncotarget, 9(2):2128-2139.

[104]TsaiMH, Megat Abdul WahabR, Zainal AriffinSH, et al., 2023. Enhanced osteogenesis potential of MG-63 cells through sustained delivery of VEGF via liposomal hydrogel. Gels, 9(7):562.

[105]TsujiK, CoxK, BandyopadhyayA, et al., 2008. BMP4 is dispensable for skeletogenesis and fracture-healing in the limb. J Bone Joint Surg Am, 90(S1):14-18.

[106]WangBD, YuXJ, HouJC, et al., 2022. Bevacizumab attenuates osteosarcoma angiogenesis by suppressing MIAT encapsulated by serum-derived extracellular vesicles and facilitating miR-613-mediated GPR158 inhibition. Cell Death Dis, 13(3):272.

[107]WangCG, HuYH, SuSL, et al., 2020. LncRNA DANCR and miR-320a suppressed osteogenic differentiation in osteoporosis by directly inhibiting the Wnt/β-catenin signaling pathway. Exp Mol Med, 52(8):1310-1325.

[108]WangMQ, ZhuWJ, GaoP, 2021. New insights into long non-coding RNAs in breast cancer: biological functions and therapeutic prospects. Exp Mol Pathol, 120:104640.

[109]WangQJ, LiY, ZhangYX, et al., 2017. LncRNA MEG3 inhibited osteogenic differentiation of bone marrow mesenchymal stem cells from postmenopausal osteoporosis by targeting miR-133a-3p. Biomed Pharmacother, 89:1178-1186.

[110]WangSL, XiongGX, NingRD, et al., 2022. LncRNA MEG3 promotes osteogenesis of hBMSCs by regulating miR-21-5p/SOD3 axis. Acta Biochim Pol, 69(1):71-77.

[111]WangXG, GuoBS, LiQ, et al., 2013. miR-214 targets ATF4 to inhibit bone formation. Nat Med, 19(1):93-100.

[112]WangXW, HeJW, WangH, et al., 2021. Fluid shear stress regulates osteoblast proliferation and apoptosis via the lncRNA TUG1/miR-34a/FGFR1 axis. J Cell Mol Med, 25(18):8734-8747.

[113]WangYJ, ChenWT, ZhaoL, et al., 2021. Obesity regulates miR-467/HoxA10 axis on osteogenic differentiation and fracture healing by BMSC-derived exosome LncRNA H19. J Cell Mol Med, 25(3):1712-1724.

[114]WeiBF, WeiW, ZhaoBX, et al., 2017. Long non-coding RNA HOTAIR inhibits miR-17-5p to regulate osteogenic differentiation and proliferation in non-traumatic osteonecrosis of femoral head. PLoS ONE, 12(2):e0169097.

[115]WeiHL, WangFH, WangY, et al., 2017. Verteporfin suppresses cell survival, angiogenesis and vasculogenic mimicry of pancreatic ductal adenocarcinoma via disrupting the YAP-TEAD complex. Cancer Sci, 108(3):478-487.

[116]WiluszJE, SunwooH, SpectorDL, 2009. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev, 23(13):1494-1504.

[117]WuMR, ChenGQ, LiYP, 2016. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res, 4:16009.

[118]WuRR, HuWX, ChenH, et al., 2021. A novel human long noncoding RNA SCDAL promotes angiogenesis through SNF5-mediated GDF6 expression. Adv Sci, 8(18):2004629.

[119]XiaoF, WangCD, WangCL, et al., 2018. BMPER enhances bone formation by promoting the osteogenesis-angiogenesis coupling process in mesenchymal stem cells. Cell Physiol Biochem, 45(5):1927-1939.

[120]XiaoY, LiCL, WangHY, et al., 2020. LINC00265 targets miR-382-5p to regulate SAT1, VAV3 and angiogenesis in osteosarcoma. Aging, 12(20):20212-20225.

[121]XuM, ChenXX, LinK, et al., 2018. The long noncoding RNA SNHG1 regulates colorectal cancer cell growth through interactions with EZH2 and miR-154-5p. Mol Cancer, 17:141.

[122]YanY, FanQX, WangLP, et al., 2017. LncRNA Snhg1, a non-degradable sponge for miR-338, promotes expression of proto-oncogene CST3 in primary esophageal cancer cells. Oncotarget, 8(22):35750-35760.

[123]YangXC, YangJX, LeiPF, et al., 2019. LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis. Aging, 11(20):8777-8791.

[124]YuG, LiSC, LiuPX, et al., 2020. LncRNA TUG1 functions as a ceRNA for miR-6321 to promote endothelial progenitor cell migration and differentiation. Exp Cell Res, 388(1):111839.

[125]YuX, RongPZ, SongMS, et al., 2021. LncRNA SNHG1 induced by SP1 regulates bone remodeling and angiogenesis via sponging miR-181c-5p and modulating SFRP1/Wnt signaling pathway. Mol Med, 27:141.

[126]YuX, SongMS, RongPZ, et al., 2022. LncRNA SNHG1 modulates adipogenic differentiation of BMSCs by promoting DNMT1 mediated Opg hypermethylation via interacting with PTBP1. J Cell Mol Med, 26(1):60-74.

[127]ZangLY, YangXL, LiWJ, et al., 2022. Long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 promotes the osteoblast differentiation of human bone marrow-derived mesenchymal stem cells by targeting the microRNA-96/osterix axis. J Craniofac Surg, 33(3):956-961.

[128]ZhangJL, TaoZW, WangYL, 2018. Long non-coding RNA DANCR regulates the proliferation and osteogenic differentiation of human bone-derived marrow mesenchymal stem cells via the p38 MAPK pathway. Int J Mol Med, 41(1):213-219.

[129]ZhangN, MengX, MeiLJ, et al., 2018. The long non-coding RNA SNHG1 attenuates cell apoptosis by regulating miR-195 and BCL2-like protein 2 in human cardiomyocytes. Cell Physiol Biochem, 50(3):1029-1040.

[130]ZhangND, HuXY, HeSH, et al., 2019. LncRNA MSC-AS1 promotes osteogenic differentiation and alleviates osteoporosis through sponging microRNA-140-5p to upregulate BMP2. Biochem Biophys Res Commun, 519(4):790-796.

[131]ZhangSZ, LuZF, XuYJ, et al., 2018. STEEL participates in fracture healing through upregulating angiogenesis-related genes by recruiting PARP 1. Eur Rev Med Pharmacol Sci, 22(12):3669-3675.

[132]ZhangXT, HuangPZ, JiangGW, et al., 2021. A novel magnesium ion-incorporating dual-crosslinked hydrogel to improve bone scaffold-mediated osteogenesis and angiogenesis. Mater Sci Eng C, 121:111868.

[133]ZhangY, WuJ, JingH, et al., 2019. Long noncoding RNA MEG3 inhibits breast cancer growth via upregulating endoplasmic reticulum stress and activating NF-κB and p53. J Cell Biochem, 120(4):6789-6797.

[134]ZhangY, CaoXY, LiPF, et al., 2020. LncRNA NKILA integrates RXFP1/AKT and NF-κB signalling to regulate osteogenesis of mesenchymal stem cells. J Cell Mol Med, 24(1):521-529.

[135]ZhangZC, TangC, DongY, et al., 2017. Targeting the long noncoding RNA MALAT1 blocks the pro-angiogenic effects of osteosarcoma and suppresses tumour growth. Int J Biol Sci, 13(11):1398-1408.

[136]ZhengJW, GuoHL, QinY, et al., 2024. SNHG5/miR-582-5p/RUNX3 feedback loop regulates osteogenic differentiation and apoptosis of bone marrow mesenchymal stem cells. J Cell Physiol, 239(12):e29527.

[137]ZhengS, WangYB, YangYL, et al., 2019. LncRNA MALAT1 inhibits osteogenic differentiation of mesenchymal stem cells in osteoporosis rats through MAPK signaling pathway. Eur Rev Med Pharmacol Sci, 23(11):4609-4617.

[138]ZhengS, ZhouCH, YangH, et al., 2022. Melatonin accelerates osteoporotic bone defect repair by promoting osteogenesis-angiogenesis coupling. Front Endocrinol, 13:826660.

[139]ZhouLW, WanY, ChengQ, et al., 2020. The expression and diagnostic value of LncRNA H19 in the blood of patients with osteoarthritis. Iran J Public Health, 49(8):1494-1501.

[140]ZhouYL, ZhangX, KlibanskiA, 2012. MEG3 noncoding RNA: a tumor suppressor. J Mol Endocrinol, 48(3):R45-R53.

[141]ZhuJ, WangYT, YuW, et al., 2019. Long noncoding RNA: function and mechanism on differentiation of mesenchymal stem cells and embryonic stem cells. Curr Stem Cell Res Ther, 14(3):259-267.

[142]ZhuangWZ, GeXP, YangSJ, et al., 2015. Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription. Stem Cells, 33(6): 1985-1997.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE