Full Text:   <1087>

Summary:  <1173>

CLC number: TN928

On-line Access: 2021-04-15

Received: 2020-08-31

Revision Accepted: 2021-02-06

Crosschecked: 2021-03-15

Cited: 0

Clicked: 2513

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Qi Zhang

https://orcid.org/0000-0002-7486-7243

Xusheng Xiong

https://orcid.org/0000-0003-2457-6795

Qiang Li

https://orcid.org/0000-0003-1471-3821

Tao Han

https://orcid.org/0000-0002-0782-7807

Yi Zhong

https://orcid.org/0000-0001-5584-0988

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.4 P.527-547

http://doi.org/10.1631/FITEE.2000444


Modeling and performance analysis of OAM-GSM millimeter-wave wireless communication systems


Author(s):  Qi Zhang, Xusheng Xiong, Qiang Li, Tao Han, Yi Zhong

Affiliation(s):  School of Electronic Information and Communication, Huazhong University of Science and Technology, Wuhan 430074, China

Corresponding email(s):   qiqiz@hust.edu.cn, xiongxusheng@hust.edu.cn, qli_patrick@hust.edu.cn, hantao@hust.edu.cn, yzhong@hust.edu.cn

Key Words:  Orbital angular momentum (OAM), Generalized spatial modulation (GSM), Millimeter-wave communication, Channel capacity, Energy efficiency, Bit error rate (BER)


Qi Zhang, Xusheng Xiong, Qiang Li, Tao Han, Yi Zhong. Modeling and performance analysis of OAM-GSM millimeter-wave wireless communication systems[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(4): 527-547.

@article{title="Modeling and performance analysis of OAM-GSM millimeter-wave wireless communication systems",
author="Qi Zhang, Xusheng Xiong, Qiang Li, Tao Han, Yi Zhong",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="22",
number="4",
pages="527-547",
year="2021",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2000444"
}

%0 Journal Article
%T Modeling and performance analysis of OAM-GSM millimeter-wave wireless communication systems
%A Qi Zhang
%A Xusheng Xiong
%A Qiang Li
%A Tao Han
%A Yi Zhong
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 4
%P 527-547
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000444

TY - JOUR
T1 - Modeling and performance analysis of OAM-GSM millimeter-wave wireless communication systems
A1 - Qi Zhang
A1 - Xusheng Xiong
A1 - Qiang Li
A1 - Tao Han
A1 - Yi Zhong
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 4
SP - 527
EP - 547
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000444


Abstract: 
In recent years, the conventional degrees of freedom in frequency and time have been fully used. It is difficult to further improve the performance of communication systems with such degrees of freedom. orbital angular momentum (OAM), which provides a new degree of freedom for millimeter-wave (mmWave) wireless communication systems, has been recognized as a key enabling technique for future mobile communication networks. By combining OAM beams that have theoretically infinite and mutually orthogonal states with the generalized spatial modulation (GSM) strategy, a new OAM-GSM mmWave wireless communication system is designed in this paper. A bit error rate (BER) model of the OAM-GSM system is established based on channel flip precoding. The channel capacity, energy efficiency, and BER of the proposed OAM-GSM mmWave wireless communication system are simulated. Numerical results show that, compared with traditional GSM systems, the OAM-GSM system has more complex transmission and reception mechanisms but the channel capacity and maximum achievable energy efficiency are increased by 80% and 54%, respectively, and the BER drops by 91.5%.

OAM-GSM毫米波无线通信系统建模与性能分析

张琪,熊绪胜,李强,韩涛,钟祎
华中科技大学电子信息与通信学院,中国武汉市,430074
概要:随着5G与物联网快速发展,海量移动设备涌入网络,产生巨大的数据交互需求,对未来网络发展提出严峻挑战。如何进一步提高通信网络容量、支持更大规模的网络接入,成为亟待解决的关键问题。在传统无线通信系统如MIMO中,空间调制、广义空间调制等调制策略被提出,以提升毫米波通信系统的传输速率,同时频率、时间等传统自由度也已被充分利用。因此,基于以上自由度很难进一步提高通信系统性能。由于轨道角动量(Orbital Angular Momentum, OAM)波在理论上具有无限个状态,并且不同状态之间存在自然正交性,OAM技术可以为无线通信系统提供新的自由度。随着无线通信系统中使用的电磁波频率逐渐升高,OAM技术也受到广泛关注。受OAM状态对信号进行编解码的思想启发,本文设计了OAM-GSM毫米波无线通信系统。与传统的广义空间调制(GSM)系统相比,OAM-GSM毫米波无线通信系统能够带来显著的性能提升,可作为未来移动网络的候选解决方案。
OAM-GSM系统发射端采用由M个OAM发射天线阵元组成的均匀线性阵列(Uniform Linear Array, ULA)。系统接收端由M组接收天线对组成,每组接收天线对包含两个接收天线,均安置在对应发射天线发射的OAM波的环形区域内。在OAM-GSM系统中,我们通过利用不同的OAM状态进行编码调制。信源的二进制比特流中的部分比特可以映射到不同的OAM状态,从而通过选择发射不同的OAM波实现信息传输。此外,在OAM-GSM系统中,信源的二进制比特流中还有一部分比特用于天线选择,一部分比特用于星座符号选择。
文中使用分离检测法检测传统调制符号、激活天线矩阵和OAM状态。在判断OAM电磁波的OAM状态时,可根据接收端两个接收天线分别检测出的所在位置OAM波的相位,利用相位梯度法确定。在OAM-GSM系统中,发射天线数量的增加使系统的误比特率(Bit Error Rate, BER)增大。为降低大发射天线数下的BER值,文中提出OAM-GSM系统预编码解决方案。
数值结果表明,与传统GSM通信系统相比,OAM-GSM毫米波系统虽然具有更复杂的收发机制,但其信道容量和最大能量效率分别提高80%、54%。同时,与传统GSM系统相比,通过采用提出的信道预编码算法,OAM-GSM毫米波系统的误码率下降91.5%。综上所述,文中设计的OAM-GSM毫米波无线通信系统具有良好性能,可作为未来移动网络的候选解决方案。

关键词:轨道角动量;广义空间调制;毫米波通信;信道容量;能量效率;误比特率

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Allen B, Tennant A, Bai Q, et al., 2014. Wireless data encoding and decoding using OAM modes. Electron Lett, 50(3):232-233.

[2]Allen L, Beijersbergen MW, Spreeuw RJC, et al., 1992. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A, 45(11):8185-8189.

[3]An ZC, Wang J, Wang JT, et al., 2017. Mutual information and error probability analysis on generalized spatial modulation system. IEEE Trans Commun, 65(3):1044-1060.

[4]Beth RA, 1936. Mechanical detection and measurement of the angular momentum of light. Phys Rev, 50(2):115-125.

[5]Cover TM, Thomas JA, 2006. Elements of Information Theory (2nd Ed.). Wiley-Interscience, Hoboken, USA.

[6]Edfors O, Johansson AJ, 2012. Is orbital angular momentum (OAM) based radio communication an unexploited area? IEEE Trans Antenn Propag, 60(2):1126-1131.

[7]Gallager RG, 1968. Information Theory and Reliable Communication. Wiley, New York, USA.

[8]Ge XH, Zi R, Xiong XS, et al., 2017. Millimeter wave communications with OAM-SM scheme for future mobile networks. IEEE J Sel Areas Commun, 35(9):2163-2177.

[9]Gibson G, Courtial J, Padgett MJ, et al., 2004. Free-space information transfer using light beams carrying orbital angular momentum. Opt Expr, 12(22):5448-5456.

[10]Goldsmith A, Jafar SA, Jindal N, et al., 2003. Capacity limits of MIMO channels. IEEE J Sel Areas Commun, 21(5):684-702.

[11]GSMR, 2011. Mobile Industry Observatory. GSMR, London, UK.

[12]Hui XN, Zheng SL, Chen YL, et al., 2015. Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas. Sci Rep, 5:10148.

[13]Irshid MI, Salous IS, 1991. Bit error probability for coherent M-ary PSK systems. IEEE Trans Commun, 39(3):349-352.

[14]Liu P, di Renzo M, Springer A, 2016. Line-of-sight spatial modulation for indoor mmWave communication at 60 GHz. IEEE Trans Wirel Commun, 15(11):7373-7389.

[15]Mesleh R, Haas H, Ahn CW, et al., 2006. Spatial modulation: a new low complexity spectral efficiency enhancing technique. Proc 1st Int Conf on Communication and Networking in China, p.1-5.

[16]Mohammadi SM, Daldorff LKS, Forozesh K, et al., 2010. Orbital angular momentum in radio: measurement methods. Radio Sci, 45(4):RS4007.

[17]Mood AM, Graybill FA, Boes DC, 1974. Introduction to the Theory of Statistics (3rd Ed.). McGraw-Hill, New York, USA.

[18]Rappaport TS, 1996. Wireless Communications: Principles and Practice. Prentice Hall PTR, Upper Saddle River, USA.

[19]Schemmel P, Maccalli S, Pisano G, et al., 2014. Three-dimensional measurements of a millimeter wave orbital angular momentum vortex. Opt Lett, 39(3):626.

[20]Simon MK, Alouini MS, 2005. Digital Communication over Fading Channels (2nd Ed.). John Wiley & Sons, New York, USA.

[21]Stavridis A, Sinanovi S, di Renzo M, et al., 2012. An energy saving base station employing spatial modulation. Proc IEEE 17th Int Workshop on Computer Aided Modeling and Design of Communication Links and Networks, p.231-235.

[22]Tamburini F, Mari E, Sponselli A, et al., 2012. Encoding many channels on the same frequency through radio vorticity: first experimental test. New J Phys, 14:033001.

[23]Thidé B, Then H, Sjöholm J, et al., 2007. Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys Rev Lett, 99(8):087701.

[24]Wang J, Yang JY, Fazal IM, et al., 2012. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photon, 6(7):488-496.

[25]Wang L, Ge XH, Zi R, et al., 2017. Capacity analysis of orbital angular momentum wireless channels. IEEE Access, 5:23069-23077.

[26]Willner AE, Wang J, Huang H, 2012. A different angle on light communications. Science, 337(6095):655-656.

[27]Xiao Y, Yang ZF, Dan LL, et al., 2014. Low-complexity signal detection for generalized spatial modulation. IEEE Commun Lett, 18(3):403-406.

[28]Yan Y, Xie GD, Lavery MPJ, et al., 2014. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat Commun, 5(1):4876.

[29]Yao AM, Padgett MJ, 2011. Orbital angular momentum: origins, behavior and applications. Adv Opt Photon, 3(2):161-204.

[30]Younis A, Serafimovski N, Mesleh R, et al., 2010. Generalised spatial modulation. Conf Record of the 44th Asilomar Conf on Signals, Systems and Computers, p.1498-1502.

[31]Zhang R, Yang LL, Hanzo L, 2015. Error probability and capacity analysis of generalised pre-coding aided spatial modulation. IEEE Trans Wirel Commun, 14(1):364-375.

[32]Zhang WT, Zheng SL, Hui XN, et al., 2017. Mode division multiplexing communication using microwave orbital angular momentum: an experimental study. IEEE Trans Wirel Commun, 16(2):1308-1318.

[33]Zhang ZF, Zheng SL, Chen YL, et al., 2016. The capacity gain of orbital angular momentum based multiple-input-multiple-output system. Sci Rep, 6:25418.

[34]Zheng SL, Hui XN, Jin XF, et al., 2015a. Generation of OAM millimeter waves using traveling-wave circular slot antenna based on ring resonant cavity. IEEE Int Conf on Computational Electromagnetics, p.239-240.

[35]Zheng SL, Hui XN, Jin XF, et al., 2015b. Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna. IEEE Trans Antenn Propag, 63(4):1530-1536.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE