Full Text:   <4267>

Summary:  <1320>

CLC number: TB3

On-line Access: 2021-03-08

Received: 2020-10-26

Revision Accepted: 2020-12-23

Crosschecked: 2021-01-22

Cited: 0

Clicked: 4109

Citations:  Bibtex RefMan EndNote GB/T7714


Jian Wu


Kai Zhang


-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering  2021 Vol.22 No.3 P.287-295


Sb2Te3 topological insulator for 52 nm wideband tunable Yb-doped passively Q-switched fiber laser

Author(s):  Tao Wang, Qiang Yu, Kun Guo, Xinyao Shi, Xuefen Kan, Yijun Xu, Jian Wu, Kai Zhang, Pu Zhou

Affiliation(s):  College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; more

Corresponding email(s):   wujian15203@163.com, kzhang2015@sinano.ac.cn

Key Words:  Topological insulator, Sb2Te3, Fiber laser, Passive Q-switching laser, Wavelength-tunable laser

Share this article to: More |Next Article >>>

Tao Wang, Qiang Yu, Kun Guo, Xinyao Shi, Xuefen Kan, Yijun Xu, Jian Wu, Kai Zhang, Pu Zhou. Sb2Te3 topological insulator for 52 nm wideband tunable Yb-doped passively Q-switched fiber laser[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(3): 287-295.

@article{title="Sb2Te3 topological insulator for 52 nm wideband tunable Yb-doped passively Q-switched fiber laser",
author="Tao Wang, Qiang Yu, Kun Guo, Xinyao Shi, Xuefen Kan, Yijun Xu, Jian Wu, Kai Zhang, Pu Zhou",
journal="Frontiers of Information Technology & Electronic Engineering",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Sb2Te3 topological insulator for 52 nm wideband tunable Yb-doped passively Q-switched fiber laser
%A Tao Wang
%A Qiang Yu
%A Kun Guo
%A Xinyao Shi
%A Xuefen Kan
%A Yijun Xu
%A Jian Wu
%A Kai Zhang
%A Pu Zhou
%J Frontiers of Information Technology & Electronic Engineering
%V 22
%N 3
%P 287-295
%@ 2095-9184
%D 2021
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2000577

T1 - Sb2Te3 topological insulator for 52 nm wideband tunable Yb-doped passively Q-switched fiber laser
A1 - Tao Wang
A1 - Qiang Yu
A1 - Kun Guo
A1 - Xinyao Shi
A1 - Xuefen Kan
A1 - Yijun Xu
A1 - Jian Wu
A1 - Kai Zhang
A1 - Pu Zhou
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 22
IS - 3
SP - 287
EP - 295
%@ 2095-9184
Y1 - 2021
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2000577

topological insulator sb2Te3 has the advantage of broadband saturable absorption from the visible to the infrared bands. Herein, the two-dimensional material sb2Te3 saturable absorber (SA) of the topological insulator family was first applied experimentally in a wideband tunable passively Q-switched Yb-doped fiber laser. High-quality sb2Te3 crystals were synthesized by the flux zone method. The sb2Te3 SA with fewer layers was further prepared via a modified mechanical exfoliation procedure. Meanwhile, stable wavelength-tunable passive Q-switching pulse operation was obtained in a Yb-doped fiber ring cavity based on the sb2Te3 SA, where the central wavelength can be continuously tuned from 1040.89 to 1092.85 nm. Results suggest that sb2Te3 has wideband saturable absorption properties, and that the tunable pulse laser can provide a convenient and simple source for practical applications.

基于拓扑绝缘体Sb2Te3的52 nm宽谱可调谐被动调Q掺镱光纤激光器

摘要:拓扑绝缘体Sb2Te3具有从可见光到红外波段的宽谱可饱和吸收的优点。在本研究中,首先将拓扑绝缘体家族中的二维材料Sb2Te3可饱和吸收体应用在宽谱可调谐被动调Q掺镱光纤激光器中。高质量的Sb2Te3晶体通过选区熔炼法合成,进一步通过改进的机械剥离方法制备少层Sb2Te3可饱和吸收体。基于此可饱和吸收体,在掺镱光纤环形腔中获得稳定的波长可调谐被动调Q脉冲,其中心波长可从1040.89 nm连续调节到1092.85 nm。实验结果表明,Sb2Te3具有宽谱可饱和吸收特性,这个波长可调谐脉冲激光可以为实际应用提供一个方便简单的光源。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Ahmad H, Soltanian MRK, Narimani L, et al., 2015. Tunable S-band Q-switched fiber laser using Bi2Se3 as the saturable absorber. IEEE Photon J, 7(3):1502508.

[2]Ahmad H, Salim MAM, Thambiratnam K, et al., 2016. A black phosphorus-based tunable Q-switched ytterbium fiber laser. Laser Phys Lett, 13(9):095103.

[3]Bao QL, Zhang H, Wang Y, et al., 2009. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater, 19(19):3077-3083.

[4]Bonaccorso F, Sun Z, Hasan T, et al., 2010. Graphene photonics and optoelectronics. Nat Photon, 4(9):611-622.

[5]Cao WJ, Wang HY, Luo AP, et al., 2012. Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser. Laser Phys Lett, 9(1):54-58.

[6]Chen SQ, Zhao CJ, Li Y, et al., 2014. Broadband optical and microwave nonlinear response in topological insulator. Opt Mater Expr, 4(4):587-596.

[7]Chen Y, Zhao CJ, Chen SQ, et al., 2014. Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser. IEEE J Sel Top Quant Electron, 20(5):315-322.

[8]Garmire E, 2000. Resonant optical nonlinearities in semiconductors. IEEE J Sel Top Quant Electron, 6(6):1094-1110.

[9]Guo J, Zhang Y, Wang ZH, et al., 2020. Tellurium@Selenium core-shell hetero-junction: facile synthesis, nonlinear optics, and ultrafast photonics applications towards mid-infrared regime. Appl Mater Today, 20:100657.

[10]Guo PL, Li XH, Feng TC, et al., 2020. Few-layer bismuthene for coexistence of harmonic and dual wavelength in a mode-locked fiber laser. ACS Appl Mater Interf, 12(28):31757-31763.

[11]Hisyam MB, Rusdi MFM, Latiff AA, et al., 2017. Generation of mode-locked Ytterbium doped fiber ring laser using few-layer black phosphorus as a saturable absorber. IEEE J Sel Top Quant Electron, 23(1):39-43.

[12]Hsieh D, Qian D, Wray L, et al., 2008. A topological Dirac insulator in a quantum spin Hall phase. Nature, 452(7190):970-974.

[13]Huang HY, Qiu M, Li Q, et al., 2016. Donor–acceptor conjugated polymers based on thieno[3,2-b]indole (TI) and 2,1,3-benzothiadiazole (BT) for high efficiency polymer solar cells. J Mater Chem C, 4(23):5448-5460.

[14]Huang WC, Xie ZJ, Fan TJ, et al., 2018a. Black-phosphorus-analogue tin monosulfide: an emerging optoelectronic two-dimensional material for high-performance photodetection with improved stability under ambient/harsh conditions. J Mater Chem C, 6(36):9582-9593.

[15]Huang WC, Xing CY, Wang YZ, et al., 2018b. Facile fabrication and characterization of two-dimensional bismuth(III) sulfide nanosheets for high-performance photodetector applications under ambient conditions. Nanoscale, 10(5):2404-2412.

[16]Huang WC, Zhang Y, You Q, et al., 2019. Enhanced photodetection properties of Tellurium@Selenium roll-to-roll nanotube heterojunctions. Small, 15(23):e1900902.

[17]Huang WC, Ma CY, Li C, et al., 2020. Highly stable MXene (V2CTx)-based harmonic pulse generation. Nanophotonics, 9(8):2577-2585.

[18]Huang YZ, Luo ZQ, Li YY, et al., 2014. Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber. Opt Expr, 22(21):25258-25266.

[19]Jhon YI, Lee J, Jhon YM, et al., 2018. Topological insulators for mode-locking of 2-μm fiber lasers. IEEE J Sel Top Quant Electron, 24(5):1102208.

[20]Kowalczyk M, Bogusławski J, Zybała R, et al., 2016. Sb2Te3-deposited D-shaped fiber as a saturable absorber for mode-locked Yb-doped fiber lasers. Opt Mater Expr, 6(7):2273-2282.

[21]Li XH, Peng JJ, Liu RS, et al., 2020. Fe3O4 nanoparticle-enabled mode-locking in an erbium-doped fiber laser. Front Optoelectron, 13(2):149-155.

[22]Liang D, Huang X, Kurczveil G, et al., 2016. Integrated finely tunable microring laser on silicon. Nat Photon, 10(11):719-722.

[23]Lin YH, Lin SF, Chi YC, et al., 2015. Using n- and p-type Bi2Te3 topological insulator nanoparticles to enable controlled femtosecond mode-locking of fiber lasers. ACS Photon, 2(4):481-490.

[24]Liu J, Liu S, Wei JS, 2010. Origin of the giant optical nonlinearity of Sb2Te3 phase change materials. Appl Phys Lett, 97(26):261903.

[25]Liu WJ, Pang LH, Han HN, et al., 2015. Generation of dark solitons in erbium-doped fiber lasers based Sb2Te3 saturable absorbers. Opt Expr, 23(20):26023-26031.

[26]Liu WJ, Pang LH, Han HN, et al., 2016. 70-fs mode-locked erbium-doped fiber laser with topological insulator. Sci Rep, 6:19997.

[27]Liu WJ, Liu ML, Han HN, et al., 2018. Nonlinear optical properties of WSe2 and MoSe2 films and their applications in passively Q-switched erbium doped fiber lasers. Photon Res, 6(10):C15-C21.

[28]Lü YJ, Wei C, Zhang H, et al., 2019. Wideband tunable passively Q-switched fiber laser at 2.8 μm using a broadband carbon nanotube saturable absorber. Photon Res, 7(1):14-18.

[29]Luo ZC, Liu M, Liu H, et al., 2013. 2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber. Opt Lett, 38(24):5212-5215.

[30]Meng YC, Salhi M, Niang A, et al., 2015. Mode-locked Er:Yb-doped double-clad fiber laser with 75-nm tuning range. Opt Lett, 40(7):1153-1156.

[31]Popa D, Sun Z, Hasan T, et al., 2011. Graphene Q-switched, tunable fiber laser. Appl Phys Lett, 98(7):073106.

[32]Qiu M, Long SR, Li BX, et al., 2013. Toward an understanding of how the optical property of water-soluble cationic polythiophene derivative is altered by the addition of salts: the hofmeister effect. J Phys Chem C, 117(42):21870-21878.

[33]Qiu M, Brandt RG, Niu YL, et al., 2015. Theoretical study on the rational design of cyano-substituted P3HT materials for OSCs: substitution effect on the improvement of photovoltaic performance. J Phys Chem C, 119(16):8501-8511.

[34]Qiu M, Zhu DQ, Yan LY, et al., 2016. Strategy to manipulate molecular orientation and charge mobility in D–A type conjugated polymer through rational fluorination for improvements of photovoltaic performances. J Phys Chem C, 120(40):22757-22765.

[35]Rong XF, Luo SY, Li WS, et al., 2018. Dual-wavelength Bi2Se3-based passively Q-switching Nd3+-doped glass all-fiber laser. Chin Opt Let, 16(2):020016.

[36]Sotor J, Sobon G, Grodecki K, et al., 2014a. Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator. Appl Phys Lett, 104(25):251112.

[37]Sotor J, Sobon G, Macherzynski W, et al., 2014b. Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber. Opt Mater Expr, 4(1):1-6.

[38]Wang JT, Yin JD, He TC, et al., 2018. Sb2Te3 mode-locked ultrafast fiber laser at 1.93 μm. Chin Phys B, 27(8):084214.

[39]Wang T, Jin XX, Yang J, et al., 2019a. Ultra-stable pulse generation in ytterbium-doped fiber laser based on black phosphorus. Nanoscale Adv, 1(1):195-202.

[40]Wang T, Shi XY, Wang J, et al., 2019b. Nonlinear photoresponse of metallic graphene-like VSe2 ultrathin nanosheets for pulse laser generation. Sci China Inform Sci, 62(12):220406.

[41]Wang T, Jin XX, Yang J, et al., 2019c. Oxidation-resistant black phosphorus enable highly ambient-stable ultrafast pulse generation at a 2 μm Tm/Ho-doped fiber laser. ACS Appl Mater Interf, 11(40):36854-36862.

[42]Wang T, Wu J, Wu HS, et al., 2019d. Wavelength-tunable LP11 mode pulse fiber laser based on black phosphorus. Opt Laser Technol, 119:105618.

[43]Wang YZ, Huang WC, Wang C, et al., 2019. An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator. Laser Photon Rev, 13(4):1800313.

[44]Wang ZH, Li CY, Ye JW, et al., 2019. Generation of harmonic mode-locking of bound solitons in the ultrafast fiber laser with Sb2Te3 saturable absorber on microfiber. Laser Phys Lett, 16(2):025103.

[45]Woodward RI, Kelleher EJR, Howe RCT, et al., 2014. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2). Opt Expr, 22(25):31113-31122.

[46]Wu HS, Wu J, Yu Q, et al., 2017. Over 70 nm broadband-tunable Yb-doped fiber pulse laser based on trilaminar graphene. Laser Phys Lett, 14(6):065105.

[47]Wu LM, Xie ZJ, Lu L, et al., 2018. Few-layer tin sulfide: a promising black-phosphorus-analogue 2D material with exceptionally large nonlinear optical response, high stability, and applications in all-optical switching and wavelength conversion. Adv Opt Mater, 6(2):1700985.

[48]Wu Q, Huang WC, Wang YZ, et al., 2020. All-optical control of microfiber knot resonator based on 2D Ti2CTx MXene. Adv Opt Mater, 8(7):1900977.

[49]Xia HD, Li HP, Lan CY, et al., 2015. Few-layer MoS2 grown by chemical vapor deposition as a passive Q-switcher for tunable erbium-doped fiber lasers. Photon Res, 3(3):A92-A96.

[50]Xie ZJ, Zhang F, Liang ZM, et al., 2019. Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide. Photon Res, 7(5):494-502.

[51]Xing CY, Xie ZJ, Liang ZM, et al., 2017. 2D nonlayered selenium nanosheets: facile synthesis, photoluminescence, and ultrafast photonics. Adv Opt Mater, 5(24):1700884.

[52]Xiong Q, 2019. Two-dimensional materials: new opportunities for electronics, photonics and optoelectronics. Sci Bull, 64(15):1031-1032.

[53]Yan PG, Chen H, Li KY, et al., 2016. Q-switched fiber laser using a fiber-tip-integrated TI saturable absorption mirror. IEEE Photon J, 8(1):1500506.

[54]Yang YY, Yang S, Li C, et al., 2019. Passively Q-switched and mode-locked Tm-Ho co-doped fiber laser using a WS2 saturable absorber fabricated by chemical vapor deposition. Opt Laser Technol, 111:571-574.

[55]Zhang H, Tang DY, Knize RJ, et al., 2010. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Appl Phys Lett, 96(11):111112.

[56]Zhang H, Virally S, Bao QL, et al., 2012. Z-scan measurement of the nonlinear refractive index of graphene. Opt Lett, 37(11):1856-1858.

[57]Zhang HJ, Liu CX, Qi XL, et al., 2009. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys, 5(6):438-442.

[58]Zhang Q, Jiang XT, Zhang M, et al., 2020. Wideband saturable absorption in metal–organic frameworks (MOFs) for mode-locking Er- and Tm-doped fiber lasers. Nanoscale, 12(7):4586-4590.

[59]Zhang Y, Zhang F, Xu YG, et al., 2019. Epitaxial growth of topological insulators on semiconductors (Bi2Se3/Te@Se) toward high-performance photodetectors. Small Methods, 3(12):1900349.

[60]Zhang Y, You Q, Huang WC, et al., 2020a. Few-layer hexagonal bismuth telluride (Bi2Te3) nanoplates with high-performance UV-Vis photodetection. Nanoscale Adv, 2(3):1333-1339.

[61]Zhang Y, Huang P, Guo J, et al., 2020b. Graphdiyne-based flexible photodetectors with high responsivity and detectivity. Adv Mater, 32(23):2001082.

[62]Zhang Y, Guo J, Xu YG, et al., 2020c. Synthesis and optoelectronics of mixed-dimensional Bi/Te binary heterostructures. Nanoscale Horiz, 5(5):847-856.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE