Full Text:   <4022>

CLC number: TV14

On-line Access: 

Received: 2007-12-07

Revision Accepted: 2008-05-16

Crosschecked: 0000-00-00

Cited: 10

Clicked: 6171

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
1. Reference List
Open peer comments

Journal of Zhejiang University SCIENCE A 2008 Vol.9 No.11 P.1560-1566


Vertical distribution of sediment concentration

Author(s):  Sai-hua HUANG, Zhi-lin SUN, Dan XU, Shan-shan XIA

Affiliation(s):  Department of Hydraulic and Ocean Engineering, Zhejiang University, Hangzhou 310058, China

Corresponding email(s):   ivyhuang21@163.com, oceansun@zju.edu.cn

Key Words:  Sediment concentration, Vertical distribution, Suspended load, Sediment discharge

Sai-hua HUANG, Zhi-lin SUN, Dan XU, Shan-shan XIA. Vertical distribution of sediment concentration[J]. Journal of Zhejiang University Science A, 2008, 9(11): 1560-1566.

@article{title="Vertical distribution of sediment concentration",
author="Sai-hua HUANG, Zhi-lin SUN, Dan XU, Shan-shan XIA",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Vertical distribution of sediment concentration
%A Sai-hua HUANG
%A Zhi-lin SUN
%A Dan XU
%A Shan-shan XIA
%J Journal of Zhejiang University SCIENCE A
%V 9
%N 11
%P 1560-1566
%@ 1673-565X
%D 2008
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0720106

T1 - Vertical distribution of sediment concentration
A1 - Sai-hua HUANG
A1 - Zhi-lin SUN
A1 - Dan XU
A1 - Shan-shan XIA
J0 - Journal of Zhejiang University Science A
VL - 9
IS - 11
SP - 1560
EP - 1566
%@ 1673-565X
Y1 - 2008
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0720106

A simple formula is proposed to predict the vertical distribution of a suspended load concentration in a 2D steady turbulent flow. The proposed formula significantly improves the well-known Rouse formula where sediment concentration has an infinitely large value at the channel bottom and a zero value at the water surface. Based on this formula and the logarithmic velocity profile, a theoretical elementary function for the transport rate of a suspended load is developed. This equation improves the Einstein equation in which the unit-width suspended sediment discharge must be solved by numerical integration and a contradiction between the lower limit of the integral and that of velocity distribution exists.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Asaeda, T., Nakai, M., Manandhar, S.K., Tamai, N., 1989. Sediment entrainment in channel with rippled bed. Journal of Hydraulic Engineering ASCE, 115(3):327-339.

[2] Bechteler, W., 1987. Stochastic model of suspended solid dispersion. Journal of Hydraulic Engineering ASCE, 113(1):16-28.

[3] Bogardi, J., 1974. Sediment Transport in Alluvial Streams. Akademial Kiodo, Budapest.

[4] Charafi, M.M., Sadok, A., 2000. Quasi-three-dimensional mathematical modeling of morphological processes based on equilibrium sediment transport. International Journal of Modern Physics C, 11(7):1425-1436.

[5] Einstein, H.A., Chien, N., 1954. Second Approximation to the Solution of the Suspended Load Theory. Chien’s Collection of Research Papers (1990). Qinghua University Press, Beijing, p.30.

[6] Engelund, F., 1965. A criterion for the occurrence of suspended load. La Houille Blanche, 6:607.

[7] Graf, W.H., Cellino, M., 2002. Suspension flows in open channels: experimental study. Journal of Hydraulic Research, 40(4):435-447.

[8] Grass, A.J., 1971. Structural factors of turbulent flow over smooth and rough boundaries. Journal of Fluid Mechanics, 50(2):233-255.

[9] Jiang, J., Law, A.W.K., Cheng, N.S., 2004. Two-phase modeling of suspended sediment distribution in open channel flows. Journal of Hydraulic Research, 42(3):273-281.

[10] Krzyk, M., Cetina, M., 2003. A two-dimensional mathematical model of suspended-sediment transport. Strojniski Vestnik-Journal of Mechanical Engineering, 49(3):173-184.

[11] Larsen, E.M., 1980. A Sediment Concentration Distribution Based on a Revised Prandtl Mixing Theory. International Symposium on River Sedimentation. Wiley-Interscience, New York, p.237-244.

[12] Mctigue, D.F., 1981. Mixture theory for suspended sediment transport. Journal of Hydraulic Division ASCE, 107(6):659-673.

[13] Orton, P.M., Kineke, G.C., 2001. Comparing calculated and observed vertical suspended-sediment distributions from a Hudson River Estuary turbidity maximum. Estuarine Coastal and Shelf Science, 52(3):401-410.

[14] Smaoui, H., Boughanim, F., 2007. 1D vertical model for suspended sediment transport in turbulent tidal flow: Application to the English Channel. Computers and Geosciences, 33(9):1111-1129.

[15] Sun, Z., 2003. Equilibrium bed-concentration of non-uniform sediment. Journal of Zhejiang University SCIENCE, 4(2):194-196.

[16] Umeyama, M., 1992. Vertical distribution of suspended sediment in uniform open-channel flow. Journal of Hydraulic Engineering ASCE, 118(6):936-941.

[17] Umeyama, M., 1999. Velocity and concentration fields in uniform flow with coarse sands. Journal of Hydraulic Engineering ASCE, 125(6):653-656.

[18] Vanoni, V.A., 1946. Transportation of suspended sediment by water. Transaction ASCE, 111:67-133.

[19] van Rijn, L.C., 1982. Equivalent roughness of alluvial bed. Journal of the Hydraulics Division, 108(10):1215-1218.

[20] White, L., Deleersnijder, E., 2007. Diagnoses of vertical transport in a three-dimensional finite element model of the tidal circulation around an island. Estuarine Coastal and Shelf Science, 74(4):655-669.

[21] Williams, J.J., Bell, P.S., Thorne, P.D., Trouw, K., Hardcastle, P.J., Humphery, J.D., 2000. Observed and predicted vertical suspended sediment concentration profiles and bed-forms in oscillatory-only flow. Journal of Coastal Research, 16(3):698-708.

[22] Wilson, K.C., 2005. Rapid increase in suspended load at high bed shear. Journal of Hydraulic Engineering ASCE, 131(1):46-51.

[23] Wren, D.G., Bennett, S.J., 2005. Distributions of velocity, turbulence and suspended sediment over low-relief anti-dunes. Journal of Hydraulic Research, 43(1):3-11.

[24] Wright, S., Parker, G., 2004. Flow resistance and suspended load in sand-bed rivers: Simplified stratification model. Journal of Hydraulic Engineering ASCE, 130(8):796-805.

[25] Zhang, R., Xie, J., 1993. Sedimentation Research in China. China Water and Power Press, Beijing, p.48-57.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE