Full Text:   <1234>

Summary:  <1370>

CLC number: X131

On-line Access: 2018-05-05

Received: 2018-01-18

Revision Accepted: 2018-03-20

Crosschecked: 2018-04-18

Cited: 0

Clicked: 2545

Citations:  Bibtex RefMan EndNote GB/T7714


Hong-ting Zhao


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2018 Vol.19 No.5 P.400-408


Neurological responses of embryo-larval zebrafish to short-term sediment exposure to decabromodiphenylethane

Author(s):  Mei-qing Jin, Dong Zhang, Ying Zhang, Shan-shan Zhou, Xian-ting Lu, Hong-ting Zhao

Affiliation(s):  College of Materials Science and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; more

Corresponding email(s):   info-iem@hdu.edu.cn

Key Words:  Decabromodiphenylethane, Flame retardant, Danio rerio, Neurotoxicity

Mei-qing Jin, Dong Zhang, Ying Zhang, Shan-shan Zhou, Xian-ting Lu, Hong-ting Zhao. Neurological responses of embryo-larval zebrafish to short-term sediment exposure to decabromodiphenylethane[J]. Journal of Zhejiang University Science B, 2018, 19(5): 400-408.

@article{title="Neurological responses of embryo-larval zebrafish to short-term sediment exposure to decabromodiphenylethane",
author="Mei-qing Jin, Dong Zhang, Ying Zhang, Shan-shan Zhou, Xian-ting Lu, Hong-ting Zhao",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Neurological responses of embryo-larval zebrafish to short-term sediment exposure to decabromodiphenylethane
%A Mei-qing Jin
%A Dong Zhang
%A Ying Zhang
%A Shan-shan Zhou
%A Xian-ting Lu
%A Hong-ting Zhao
%J Journal of Zhejiang University SCIENCE B
%V 19
%N 5
%P 400-408
%@ 1673-1581
%D 2018
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1800033

T1 - Neurological responses of embryo-larval zebrafish to short-term sediment exposure to decabromodiphenylethane
A1 - Mei-qing Jin
A1 - Dong Zhang
A1 - Ying Zhang
A1 - Shan-shan Zhou
A1 - Xian-ting Lu
A1 - Hong-ting Zhao
J0 - Journal of Zhejiang University Science B
VL - 19
IS - 5
SP - 400
EP - 408
%@ 1673-1581
Y1 - 2018
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1800033

decabromodiphenylethane (DBDPE) has been widely used as an alternative flame retardant due to the restriction or phase-out of traditional polybrominated diphenyl ethers (PBDEs), and is of increasing concern regarding its ubiquity, persistence, and potential adverse effects. In the present study, the toxicological effects of DBDPE were evaluated using zebrafish as an in vivo model. Upon being exposed to DBDPE-polluted sediments for a short term, it was found that the mortality and malformation of zebrafish (including edema, bent notochord, and bent tail) were not affected even at the highest concentration tested (1000.0 µg/kg dry sediment). Regarding behavioral responses, it was found that zebrafish larvae of 48 hours post fertilization (hpf) in all groups escaped successfully with a touch to the dorsal fin. However, when exposed to the highest DBDPE concentration, the larvae of 120 hpf exhibited significantly smaller distances as compared to the control. Moreover, the results of the acetylcholinesterase (AChE) activity, the expression levels of two important nerve-related genes, and the cell apoptosis all indicated that DBDPE posed low neurotoxicity in embryo-larval zebrafish. The results in this study shed some light on the potential risks of DBDPE in the real environment and highlight the application of the sediment exposure route in the future.


方法:将受精后4小时(4 hpf)的斑马鱼胚胎置于对照底泥和染毒底泥(DBDPE系列浓度)中进行短期暴露,观察不同发育阶段的存活率、孵化率、畸形率以及行为(包括触碰反应和自由泳动)效应;并通过斑马鱼幼鱼的乙酰胆碱酶活性、神经系统的相关基因(α1-tubulingap43)的转录水平以及斑马鱼整体组织的细胞凋亡情况的检测探讨其神经毒性的潜在机制.
结论:DBDPE从4 hpf处理至120 hpf,各浓度组的斑马鱼均未出现明显的畸形和死亡.在72 hpf时,最低浓度组(62.5 µg/kg)DBDPE轻微加快了斑马鱼的孵化,而最高浓度组(1000.0 µg/kg)DBDPE轻微延迟斑马鱼的孵化.所有浓度组的DBDPE对48 hpf时斑马鱼的触碰反应没有任何影响,最高浓度组(1000.0 µg/kg)DBDPE对120 hpf时斑马鱼的自由泳动总距离有显著的抑制作用(P<0.05).但是,斑马鱼的乙酰胆碱酶活性、α1-tubulingap43的转录水平未发生显著变化,所有浓度组的DBDPE亦均未诱发斑马鱼整体组织的细胞凋亡.


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Bailey J, Oliveri A, Levin ED, 2013. Zebrafish model systems for developmental neurobehavioral toxicology. Birth Defects Res C Embryo Today, 99(1):14-23.

[2]Chen SJ, Feng AH, He MJ, et al., 2013. Current levels and composition profiles of PBDEs and alternative flame retardants in surface sediments from the Pearl River Delta, southern China: comparison with historical data. Sci Total Environ, 444:205-211.

[3]Chen XP, Dong QX, Chen YH, et al., 2017. Effects of Dechlorane Plus exposure on axonal growth, musculature and motor behavior in embryo-larval zebrafish. Environ Pollut, 224:7-15.

[4]EPA (Environmental Protection Agency ), 2000. Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates. EPA, Washington DC.

[5]Garcia-Reyero N, Escalon BL, Prats E, et al., 2014. Effects of BDE-209 contaminated sediments on zebrafish development and potential implications to human health. Environ Int, 63:216-223.

[6]Gascon M, Fort M, Martinez D, et al., 2012. Polybrominated diphenyl ethers (PBDEs) in breast milk and neuropsychological development in infants. Environ Health Perspect, 120(12):1760-1765.

[7]Hardy ML, 2004. A comparison of the fish bioconcentration factors for brominated flame retardants with their nonbrominated analogues. Environ Toxicol Chem, 23(3):656-661.

[8]Hardy ML, Margitich D, Ackerman L, et al., 2002. The subchronic oral toxicity of ethane, 1,2-bis(pentabromophenyl) (Saytex 8010) in rats. Int J Toxicl, 21(3):165-170.

[9]Hardy ML, Mercieca MD, Rodwell DE, et al., 2010. Prenatal developmental toxicity of decabromodiphenyl ethane in the rat and rabbit. Birth Defects Res B Dev Reprod Toxicol, 89(2):139-146.

[10]Hardy ML, Aufderheide J, Krueger HO, et al., 2011. Terrestrial toxicity evaluation of decabromodiphenyl ethane on organisms from three trophic levels. Ecotoxicol Environ Saf, 74(4):703-710.

[11]Hardy ML, Krueger HO, Blankinship AS, et al., 2012. Studies and evaluation of the potential toxicity of decabromodiphenyl ethane to five aquatic and sediment organisms. Ecotoxicol Environ Saf, 75(1):73-79.

[12]He MJ, Luo XJ, Chen MY, et al., 2012. Bioaccumulation of polybrominated diphenyl ethers and decabromodiphenyl ethane in fish from a river system in a highly industrialized area, South China. Sci Total Environ, 419:109-115.

[13]He P, He W, Wang A, et al., 2008. PBDE-47-induced oxidative stress, DNA damage and apoptosis in primary cultured rat hippo-campal neurons. Neurotoxicology, 29(1):124-129.

[14]He SJ, Li MY, Jin J, et al., 2013. Concentrations and trends of halogenated flame retardants in the pooled serum of residents of Laizhou Bay, China. Environ Toxicol Chem, 32(6):1242-1247.

[15]Hong B, Wu T, Zhao GC, et al., 2015. Occurrence of decabromodiphenyl ethane in captive Chinese alligators (Alligator sinensis) from China. Bull Environ Contam Toxicol, 94(1):12-16.

[16]Huang SC, Giordano G, Costa LG, 2010. Comparative cytotoxicity and intracellular accumulation of five polybrominated diphenyl ether congeners in mouse cerebellar granule neurons. Toxicol Sci, 114(1):124-132.

[17]Jin MQ, Zhang XF, Wang LJ, et al., 2009. Developmental toxicity of bifenthrin in embryo-larval stages of zebrafish. Aquat Toxicol, 95(4):347-354.

[18]Kierkegaard A, Bjorklund J, 2003. The presence of a “new” flame retardant, decabromodiphenyl ethane, in environmental samples. Organohalogen Compound, 61:183-186.

[19]Knudsen GA, Sanders JM, Hughes MF, et al., 2017. The biological fate of decabromodiphenyl ethane following oral, dermal or intravenous administration. Xenobiotica, 47(10):894-902.

[20]Lee S, Song GJ, Kannan K, et al., 2014. Occurrence of PBDEs and other alternative brominated flame retardants in sludge from wastewater treatment plants in Korea. Sci Total Environ, 470-471:1422-1429.

[21]Liu HC, Zhu XY, Chen JH, et al., 2017. Toxicity comparison of different active fractions extracted from radix Sophorae tonkinensis in zebrafish. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 18(9):757-769.

[22]Moller A, Xie ZY, Cai MH, et al., 2011. Polybrominated diphenyl ethers vs alternate brominated flame retardants and dechloranes from East Asia to the Arctic. Environ Sci Technol, 45(16):6793-6799.

[23]Nakari T, Huhtala S, 2010. In vivo and in vitro toxicity of decabromodiphenyl ethane, a flame retardant. Environ Toxicol, 25(4):333-338.

[24]Putman DL, Morris MJ, 1991. Chromosome aberrations in Chinese Hamster Lung (CHL) cells. Test article Saytex 402. Study Number: T9499.337025. Microbiological Associates, Inc., Rockville, MD, p.1-55.

[25]San RHC, Wagner VO, 1991. Salmonella/mammalian-microsome plate incorporation mutagenicity assay (Ames test) and Escherichia coli WP2 uvrA reverse mutation assay. Test article Saytex 402. Study Number: T9499.501038. Microbiological Associates, Inc., Rockville, MD, p.1-68.

[26]She YZ, Wu JP, Zhang Y, et al., 2013. Bioaccumulation of polybrominated diphenyl ethers and several alternative halogenated flame retardants in a small herbivorous food chain. Environ Pollut, 174:164-170.

[27]Sun RB, Xi ZG, Zhang HS, et al., 2014. Subacute effect of decabromodiphenyl ethane on hepatotoxicity and hepatic enzyme activity in rats. Biomed Environ Sci, 27(2):122-125.

[28]Viberg H, Fredriksson A, Eriksson P, 2007. Changes in spontaneous behavior and altered response to nicotine in the adult rat, after neonatal exposure to the brominated flame retardant, decabrominated diphenyl ether (PBDE 209). Neurotoxicology, 28(1):136-142.

[29]Wang FX, Wang J, Dai JY, et al., 2010. Comparative tissue distribution, biotransformation and associated biological effects by decabromodiphenyl ethane and decabrominated diphenyl ether in male rats after a 90-day oral exposure study. Environ Sci Technol, 44(14):5655-5660.

[30]Winter MJ, Redfern WS, Hayfield AJ, et al., 2008. Validation of a larval zebrafish locomotor assay for assessing the seizure liability of early-stage development drugs. J Pharmacol Toxicol Methods, 57(3):176-187.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE