CLC number: O43
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2009-02-09
Cited: 3
Clicked: 6718
Xu ZENG, Yu WU, Chang-lun HOU, Guo-guang YANG. High-finesse displacement sensor and a theoretical accelerometer model based on a fiber Fabry-Perot interferometer[J]. Journal of Zhejiang University Science A, 2009, 10(4): 589-594.
@article{title="High-finesse displacement sensor and a theoretical accelerometer model based on a fiber Fabry-Perot interferometer",
author="Xu ZENG, Yu WU, Chang-lun HOU, Guo-guang YANG",
journal="Journal of Zhejiang University Science A",
volume="10",
number="4",
pages="589-594",
year="2009",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.A0820270"
}
%0 Journal Article
%T High-finesse displacement sensor and a theoretical accelerometer model based on a fiber Fabry-Perot interferometer
%A Xu ZENG
%A Yu WU
%A Chang-lun HOU
%A Guo-guang YANG
%J Journal of Zhejiang University SCIENCE A
%V 10
%N 4
%P 589-594
%@ 1673-565X
%D 2009
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A0820270
TY - JOUR
T1 - High-finesse displacement sensor and a theoretical accelerometer model based on a fiber Fabry-Perot interferometer
A1 - Xu ZENG
A1 - Yu WU
A1 - Chang-lun HOU
A1 - Guo-guang YANG
J0 - Journal of Zhejiang University Science A
VL - 10
IS - 4
SP - 589
EP - 594
%@ 1673-565X
Y1 - 2009
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A0820270
Abstract: A displacement sensor based on the fiber Fabry-Perot (F-P) cavity was proposed in this paper. Theoretical and experimental analyses were presented. Displacement resolution was demonstrated by spectrum-domain experiments to obtain the dynamic range of the F-P sensor, and a piezoelectric crystal unit (PZT) was used as the driver. The output signal was modulated by a piezoelectric ceramic ring and demodulated by a phase-locked oscillator. The experimental results show that the displacement resolution of the F-P sensor is less than 5 nm and the dynamic range is more than 100 μm. As acceleration is the second-order differential of displacement, an accelerometer model was proposed using the finite element method (FEM) and ANSYS software.
[1] Akamine, S., Albrecht, T.R., Zdeblich, M.J., Quate, C.F., 1989. Microfabricated scanning tunneling microscope. IEEE Electron Dev. Lett., 10(11):490-492.
[2] Genossar, J., Steinitz, M., 1990. A tilted-plate capacitance displacement sensor. Rev. Sci. Instrum., 61(9):2469-2471.
[3] Lv, T., Du, Q.J., Bi, J., Xiang, D., 2007. Effect of cavity length loss on fiber-optic sensor based on extrinsic Fabry-Perot cavity. Opto-Electron. Eng., 34(2):130-133 (in Chinese).
[4] Meyer, G., Amer, N.M., 1988. Novel optical approach to atomic force microscopy. Appl. Phys. Lett., 53(12):1045-1047.
[5] Niu, W.C., Yang, Y.F., Kai, G.Y., Dong, X.Y., 2005. Exactitude displacement measurement based on fiber Bragg grating sensors. Nanotech. Prec. Eng., 3(1):53-55 (in Chinese).
[6] Roth, P., Gmelin, E., 1992. A capacitance displacement sensor with elastic diaphragm. Rev. Sci. Instrum., 63(3):2051-2053.
[7] Rugar, D., Mamin, H.J., Erlandson, R., Stern, J.E., Terris, B.D., 1988. Force microscope using a fiber-optic displacement sensor. Rev. Sci. Instrum., 59(11):2337-2340.
[8] Zhang, P., Zhu, Y., Tang, X.C., Chen, W.M., 2005. Demodulation of the optical fiber Fabry-Perot sensor based on Fourier transform. Acta Opt. Sin., 25(2):186-189 (in Chinese).
[9] Zheng, J., Albin, S., 1998. Self-referenced reflective intensity fiber optic displacement sensor. Opt. Eng., 38(2):227-232.
Open peer comments: Debate/Discuss/Question/Opinion
<1>