Full Text:   <3094>

Summary:  <1680>

CLC number: TG174

On-line Access: 2014-06-04

Received: 2013-10-29

Revision Accepted: 2014-02-17

Crosschecked: 2014-05-21

Cited: 6

Clicked: 5350

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A 2014 Vol.15 No.6 P.447-453


A nonlinear cumulative evolution model for corrosion fatigue damage*

Author(s):  Zhong-ying Han1, Xiao-guang Huang2, Yu-guang Cao2, Jin-quan Xu3

Affiliation(s):  1. College of Petroleum Engineering, China University of Petroleum, Qingdao 266580, China; more

Corresponding email(s):   huangupc@126.com

Key Words:  Corrosion fatigue, Stress corrosion, Nonlinear accumulation, Damage evolution

Zhong-ying Han, Xiao-guang Huang, Yu-guang Cao, Jin-quan Xu. A nonlinear cumulative evolution model for corrosion fatigue damage[J]. Journal of Zhejiang University Science A, 2014, 15(6): 447-453.

@article{title="A nonlinear cumulative evolution model for corrosion fatigue damage",
author="Zhong-ying Han, Xiao-guang Huang, Yu-guang Cao, Jin-quan Xu",
journal="Journal of Zhejiang University Science A",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T A nonlinear cumulative evolution model for corrosion fatigue damage
%A Zhong-ying Han
%A Xiao-guang Huang
%A Yu-guang Cao
%A Jin-quan Xu
%J Journal of Zhejiang University SCIENCE A
%V 15
%N 6
%P 447-453
%@ 1673-565X
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.A1300362

T1 - A nonlinear cumulative evolution model for corrosion fatigue damage
A1 - Zhong-ying Han
A1 - Xiao-guang Huang
A1 - Yu-guang Cao
A1 - Jin-quan Xu
J0 - Journal of Zhejiang University Science A
VL - 15
IS - 6
SP - 447
EP - 453
%@ 1673-565X
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.A1300362

A nonlinear cumulative evolution model for corrosion fatigue damage was proposed. corrosion fatigue damage was considered as a nonlinear cumulative result of stress corrosion damage and fatigue damage. The influences of stress corrosion damage and fatigue damage on corrosion fatigue damage and damage evolution life were studied from a phenomenological point of view. The relevant damage parameters were determined by the experimental results of the LY12CZ aluminum alloy, and the corrosion fatigue life evaluation model based on damage evolution law was established. The corrosion fatigue life predicted by evaluation model agrees well with the experimental result. The damage evolution model in this study can provide a new method for theoretical research and life prediction of corrosion fatigue.




Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Alamilla, J.L., Espinosa-Medina, M.A., Sosa, E., 2009. Modelling steel corrosion damage in soil environment. Corrosion Science, 51(11):2628-2638. 

[2] Besson, J., 2010. Continuum models of ductile fracture: a review. International Journal of Damage Mechanics, 19(1):3-52. 

[3] Bhuiyan, M.S., Mutoh, Y., Murai, T., 2008. Corrosion fatigue behavior of extruded magnesium alloy AZ61 under three different corrosive environments. International Journal of Fatigue, 30(10-11):1756-1765. 

[4] Chaboche, J.L., 1981. Continuous damage mechanics—A tool to describe phenomena before crack initiation. Nuclear Engineering and Design, 64(2):233-247. 

[5] Chaboche, J.L., 1988. Continuum damage mechanics: part I—general concepts. Journal of Applied Mechanics, 55(1):59-64. 

[6] Chaboche, J.L., 1988. Continuum damage mechanics: part II—damage growth, crack initiation and crack growth. Journal of Applied Mechanics, 55(1):65-72. 

[7] E466-072007, . Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials. Annual Book of ASTM Standards, USA :

[8] Fatemi, A., Vangt, L., 1998. Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. International Journal of Fatigue, 20(1):9-34. 

[9] G49-852011, . Standard Practice for Preparation and Use of Direct Tension Stress-corrosion Test Specimens. Annual Book of ASTM Standards, USA :

[10] Gao, Z.T., Jiang, X.T., Xiong, J.J., 1999.  Fatigue Behavior Test Design and Data Treatment. (in Chinese), Beihang University Press,Beijing, China :

[11] GB/T 15970.42000, .  Corrosion of Metals and Alloys-stress Corrosion TestingPart 4: Preparation and Use of Uniaxially Loaded Tension Specimens. (in Chinese), State Bureau of Quality Technical Supervision,Beijing, China :

[12] GB/T 20120.12006, .  Corrosion of Metals and Alloys-corrosion Fatigue Testing-cycles to Failure Testing. (in Chinese), State Bureau of Quality Technical Supervision,Beijing, China :

[13] Huang, X.G., Xu, J.Q., 2013. 3D analysis for pit evolution and pit-to-crack transition during corrosion fatigue. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(4):292-299. 

[14] Ishihara, S., Nan, Z.Y., McEvily, A.J., 2008. On the initiation and propagation behavior of corrosion pits during corrosion fatigue process of industrial pure aluminum. International Journal of Fatigue, 30(9):1659-1668. 

[15] Jain, J.R., Ghosh, S., 2008. Damage evolution in composites with a homogenization-based continuum damage mechanics model. International Journal of Damage Mechanics, 18(6):533-568. 

[16] Kermanidis, A.T., Petroyianas, P.V., Pantelakis, S.G., 2005. Fatigue and damage tolerance behavior of corroded 2024 T351 aircraft aluminum alloy. Theoretical and Applied Fracture Mechanics, 43(1):121-132. 

[17] Kim, S.J., Kim, S.K., Park, J.C., 2010. The corrosion and mechanical properties of Al alloy 5083-H116 in metal inert gas welding based on slow strain rate test. Surface and Coatings Technology, 205(1S):73-78. 

[18] Kotsikos, G., Evans, J.T., Gibson, A.G., 1999. Use of acoustic emission to characterize corrosion fatigue damage accumulation in glass fiber reinforced polyester laminates. Polymer Composites, 20(5):689-696. 

[19] Lemaitre, J., 1985. A continuous damage mechanics model for ductile fracture. Journal of Engineering Materials and Technology, 107(1):83-89. 

[20] Lemaitre, J., Chaboche, J.L., 1990.  Mechanics of Solid Materials. Cambridge University Press,Cambridge, UK :

[21] Li, S.J., Zhang, Z.G., Akiyamab, E.J., 2010. Evaluation of susceptibility of high strength steels to delayed fracture by using cyclic corrosion test and slow strain rate test. Corrosion Science, 52(5):1660-1667. 

[22] Misak, H.E., Perel, V.Y., Sabelkin, V., 2013. Corrosion fatigue crack growth behavior of 7075-T6 under biaxial tension-tension cyclic loading condition. Engineering Fracture Mechanics, 106:38-48. 

[23] Nakano, H., Oue, S., Taguchi, S., 2012. Stress-corrosion cracking property of aluminum-magnesium alloy processed by equal-channel angular pressing. International Journal of Corrosion, 2012:1-8. 

[24] Ohata, M., Fukahori, T., Minami, F., 2010. Damage model for predicting the effect of steel properties on ductile crack growth resistance. International Journal of Damage Mechanics, 19(4):441-459. 

[25] Raykar, N.R., Maiti, S.K., Singh Raman, R.K., 2011. Modelling of mode-I stable crack growth under hydrogen assisted stress corrosion cracking. Engineering Fracture Mechanics, 78(18):3153-3165. 

[26] Tang, Z.B., Li, Q., 2007. Review: Advances in research of stress-assisted corrosion fatigue problem. Journal of Zhejiang University-SCIENCE A, 8(2):221-227. 

[27] Wu, L., Chen, Z.T., Sun, Q., 2004. Damage mechanics model for the initiation life of stress corrosion cracking. Journal of Mechanical Strength, (in Chinese),26(S):58-59. 

[28] Zhang, G.D., Zhao, Y.F., Xue, F., 2011. Creep-fatigue interaction damage model and its application in modified 9Cr-1Mo steel. Nuclear Engineering and Design, 241(12):4856-4861. 

[29] Zhao, W.M., Xin, R.F., He, Z.R., 2012. Contribution of anodic dissolution to the corrosion fatigue crack propagation of X80 steel in 3.5 wt.% NaCl solution. Corrosion Science, 63:387-392. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE