Full Text:   <3533>

CLC number: Q547; Q956

On-line Access: 2012-04-06

Received: 2011-03-23

Revision Accepted: 2011-08-29

Crosschecked: 2011-12-01

Cited: 9

Clicked: 6601

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2012 Vol.13 No.4 P.307-317

http://doi.org/10.1631/jzus.B1100090


Long-term high fructose and saturated fat diet affects plasma fatty acid profile in rats


Author(s):  Fabrice Tranchida, Lopold Tchiakpe, Zo Rakotoniaina, Valrie Deyris, Olivier Ravion, Abel Hiol

Affiliation(s):  Institute of Molecular Sciences of Marseilles, iSm2 UMR 7313, CNRS, Aix-Marseille University, 13397 Marseilles Cedex 20, France; more

Corresponding email(s):   abell.hiol@gmail.com

Key Words:  High fructose and saturated fatty acid diet, Metabolic syndrome, Plasma fatty acids, Adaptive response, Rats


Fabrice Tranchida, Lopold Tchiakpe, Zo Rakotoniaina, Valrie Deyris, Olivier Ravion, Abel Hiol. Long-term high fructose and saturated fat diet affects plasma fatty acid profile in rats[J]. Journal of Zhejiang University Science B, 2012, 13(4): 307-317.

@article{title="Long-term high fructose and saturated fat diet affects plasma fatty acid profile in rats",
author="Fabrice Tranchida, Lopold Tchiakpe, Zo Rakotoniaina, Valrie Deyris, Olivier Ravion, Abel Hiol",
journal="Journal of Zhejiang University Science B",
volume="13",
number="4",
pages="307-317",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1100090"
}

%0 Journal Article
%T Long-term high fructose and saturated fat diet affects plasma fatty acid profile in rats
%A Fabrice Tranchida
%A Lopold Tchiakpe
%A Zo Rakotoniaina
%A Valrie Deyris
%A Olivier Ravion
%A Abel Hiol
%J Journal of Zhejiang University SCIENCE B
%V 13
%N 4
%P 307-317
%@ 1673-1581
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1100090

TY - JOUR
T1 - Long-term high fructose and saturated fat diet affects plasma fatty acid profile in rats
A1 - Fabrice Tranchida
A1 - Lopold Tchiakpe
A1 - Zo Rakotoniaina
A1 - Valrie Deyris
A1 - Olivier Ravion
A1 - Abel Hiol
J0 - Journal of Zhejiang University Science B
VL - 13
IS - 4
SP - 307
EP - 317
%@ 1673-1581
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1100090


Abstract: 
As the consumption of fructose and saturated fatty acids (FAs) has greatly increased in western diets and is linked with an increased risk of metabolic syndrome, the aim of this study was to investigate the effects of a moderate (10 weeks) and a prolonged (30 weeks) high fructose and saturated fatty acid (HFS) diet on plasma FA composition in rats. The effects of a few weeks of HFS diet had already been described, but in this paper we tried to establish whether these effects persist or if they are modified after 10 or 30 weeks. We hypothesized that the plasma FA profile would be altered between 10 and 30 weeks of the HFS diet. rats fed with either the HFS or a standard diet were tested after 10 weeks and again after 30 weeks. After 10 weeks of feeding, HFS-fed rats developed the metabolic syndrome, as manifested by an increase in fasting insulinemia, total cholesterol and triglyceride levels, as well as by impaired glucose tolerance. Furthermore, the plasma FA profile of the HFS group showed higher proportions of monounsaturated FAs like palmitoleic acid [16:1(n-7)] and oleic acid [18:1(n-9)], whereas the proportions of some polyunsaturated n-6 FAs, such as linoleic acid [18:2(n-6)] and arachidonic acid [20:4(n-6)], were lower than those in the control group. After 30 weeks of the HFS diet, we observed changes mainly in the levels of 16:1(n-7) (decreased) and 20:4(n-6) (increased). Together, our results suggest that an HFS diet could lead to an adaptive response of the plasma FA profile over time, in association with the development of the metabolic syndrome.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdullah, M.M., Riediger, N.N., Chen, Q., Zhao, Z., Azordegan, N., Xu, Z., Fischer, G., Othman, R.A., Pierce, G.N., Tappia, P.S., et al., 2009. Effects of long-term consumption of a high-fructose diet on conventional cardiovascular risk factors in Sprague-Dawley rats. Mol. Cell. Biochem., 327(1-2):247-256.

[2]Aro, A., 2003. Fatty acid composition of serum lipids: is this marker of fat intake still relevant for identifying metabolic and cardiovascular disorders? Nutr. Metab. Cardiovasc. Dis., 13(5):253-255.

[3]Astrup, A., Finer, N., 2000. Redefining type 2 diabetes: ‘diabesity’ or ‘obesity dependent diabetes mellitus’? Obes. Rev., 1(2):57-59.

[4]Attie, A.D., Krauss, R.M., Gray-Keller, M.P., Brownlie, A., Miyazaki, M., Kastelein, J.J., Lusis, A.J., Stalenhoef, A.F.H., Stoehr, J.P., Hayden, M.R., et al., 2002. Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia. J. Lipid Res., 43(11):1899-1907.

[5]Balkau, B., Charles, M.A., Drisvsholm, T., Borch-Johnsen, K., Wareham, N., Yudkin, J.S., Morris, R., Zavaroni, I., van Dam, R., Feskins, E., et al., 2002. Frequency of the WHO metabolic syndrome in European cohorts, and an alternative definition of an insulin resistance syndrome. Diabetes Metab., 28(5):364-376.

[6]Bantle, J.P., Laine, D.C., Thomas, J.W., 1986. Metabolic effects of dietary fructose and sucrose in types I and II diabetic subjects. JAMA, 256(23):3241-3246.

[7]Basciano, H., Federico, L., Adeli, K., 2005. Fructose, insulin resistance, and metabolic dyslipidemia. Nutr. Metab., 2(1):5.

[8]Berkane, A.A., Nguyen, H.T.T., Tranchida, F., Waheed, A.A., Deyris, V., Tchiakpe, L., Fasano, C., Nicoletti, C., Desseaux, V., Ajandouz, E.H., et al., 2007. Proteomic of lipid rafts in the exocrine pancreas from diet-induced obese rats. Biochem. Biophys. Res. Commun., 355(3):813-819.

[9]Buettner, R., Scholmerich, J., Bolheimer, L.C., 2007. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity, 15(4):798-808.

[10]Chen, L.Y., Zhu, W.H., Chen, Z.W., Dai, H.L., Ren, J.J., Chen, J.H., Chen, L.Q., Fang, L.Z., 2007. Relationship between hyperuricemia and metabolic syndrome. J. Zhejiang Univ.-Sci. B, 8(8):593-598.

[11]Chong, M.F., Fielding, B.A., Frayn, K.N., 2007. Mechanisms for the acute effect of fructose on postprandial lipemia. Am. J. Clin. Nutr., 85(6):1511-1520.

[12]Clark, D.G., Rognstad, R., Katz, J., 1974. Lipogenesis in rat hepatocytes. J. Biol. Chem., 249(7):2028-2036.

[13]Clifton, P.M., Nestel, P.J., 1998. Relationship between plasma insulin and erythrocyte fatty acid composition. Prostaglandins Leukot. Essent. Fatty Acids, 59(3):191-194.

[14]Clore, J.N., Harris, P.A., Li, J., Azzam, A., Gill, R., Zuelzer, W., Rizzo, W.B., Blackard, W.G., 2000. Changes in phosphatidylcholine fatty acid composition are associated with altered skeletal muscle insulin responsiveness in normal man. Metabolism, 49(2):232-238.

[15]Comte, C., Bellenger, S., Bellenger, J., Tessier, C., Poisson, J.P., Narce, M., 2004. Effects of streptozotocin and dietary fructose on delta-6 desaturation in spontaneously hypertensive rat liver. Biochimie, 86(11):799-806.

[16]Dai, S.K., McNeill, J.H., 1995. Fructose-induced hypertension in rats is concentration- and duration-dependent. J. Pharmacol. Toxicol. Methods, 33(2):101-107.

[17]Dobrzyn, P., Dobrzyn, A., Miyazaki, M., Cohen, P., Asilmaz, E., Hardie, D.G., 2004. Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. PNAS, 101(17):6409-6414.

[18]Dresner, A., Laurent, D., Marcucci, M., Griffin, M.E., Dufour, S., Cline, G.W., Slezak, L.A., Andersen, D.K., Hundal, R.S., Rothman, D.L., et al., 1999. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J. Clin. Invest., 103(2):253-259.

[19]Evans, J.L., Goldfine, I.D., Maddux, B.A., Grodsky, G.M., 2003. Are oxidative stress-activated signaling pathways mediators of insulin resistance and β-cell dysfunction? Diabetes, 52(1):1-8.

[20]Girard, A., Madani, S., El Boustani, E.S., Belleville, J., Prost, J., 2005. Changes in lipid metabolism and antioxidant defense status in spontaneously hypertensive rats and Wistar rats fed a diet enriched with fructose and saturated fatty acids. Nutrition, 21(2):240-248.

[21]Griffin, M.E., Marcucci, M.J., Cline, G.W., Bell, K., Barucci, N., Lee, D., Goodyear, L.J., Kraegen, E.W., White, M.F., Shulman, G.I., 1999. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C θ and alterations in the insulin-signaling cascade. Diabetes, 48(6):1270-1274.

[22]Grundy, S.M., 1998. Multifactorial causation of obesity: implications for prevention. Am. J. Clin. Nutr., 67(3):563S-572S.

[23]Havel, P.J., 2005. Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr. Rev., 63(5):133-157.

[24]Hu, Q., Ishii, E., Nalagawa, Y., 1994. Differential changes in relative levels of arachidonic acid in major phospholipids from rat tissues during the progression of diabetes. J. Biochem., 115(3):405-408.

[25]Hulver, M.W., Berggren, J.R., Carper, M.J., Miyazaki, M., Ntambi, J.M., Hoffman, E.P., Thyfault, J.P., Stevens, R., Dohm, G.L., Houmard, J.A., et al., 2005. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab., 2(4):251-261.

[26]Kim, Y.C., Ntambi, J.M., 1999. Regulation of stearoyl-CoA desaturase genes: role in cellular metabolism and preadipocyte differentiation. Biochem. Biophys. Res. Commun., 266(1):1-4.

[27]Ma, J., Folsom, A.R., Shahar, E., Eckfeldt, J.H., for the Atherosclerosis Risk in Communities (ARIC) Study Investigators, 1995. Plasma fatty acid composition as an indicator of habitual dietary fat intake in middle-aged adults. Am. J. Clin. Nutr., 62(3):564-571.

[28]Maedler, K., Spinas, G.A., Dyntar, D., Moritz, W., Kaiser, N., Donath, M.Y., 2001. Distinct effects of saturated and monounsaturated fatty acids on β-cell turnover and function. Diabetes, 50(1):69-76.

[29]Maedler, K., Oberholzer, J., Bucher, P., Spinas, G.A., Donath, M.Y., 2003. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic β-cell turnover and function. Diabetes, 52(3):726-733.

[30]Malik, V.S., Schulze, M.B., Hu, F.B., 2006. Intake of sugar-sweetened beverages and weight gain: a systematic review. Am. J. Clin. Nutr., 84(2):274-288.

[31]Masood, A., Stark, K.D., Salem, N.Jr., 2005. A simplified and efficient method for the analysis of fatty acid methyl esters suitable for large clinical studies. J. Lipid Res., 46(10):2299-2305.

[32]Matsuzaka, T., Shimano, H., Yahagi, N., Amemiya-Kudo, M., Okazaki, H., Tamura, Y., Iizuka, Y., Ohashi, K., Tomita, S., Sekiya, et al., 2004. Insulin-independent induction of sterol regulatory element-binding protein-1c expression in the livers of streptozotocin-treated mice. Diabetes, 53(3):560-569.

[33]Mayes, P.A., 1993. Intermediary metabolism of fructose. Am. J. Clin. Nutr., 58(5):754S-765S.

[34]Mayes, P.A., Laker, M.E., 1986. Effects of acute and long-term fructose administration on liver lipid metabolism. Prog. Biochem. Pharmacol., 21:33-58.

[35]Mittendorfer, B., Sidossis, L.S., 2001. Mechanism for the increase in plasma triacylglycerol concentrations after consumption of short-term, high-carbohydrate diets. Am. J. Clin. Nutr., 73(5):892-899.

[36]Miyazaki, M., Kim, Y.C., Ntambi, J.M., 2001. A lipogenic diet in mice with a disruption of the stearoyl-CoA desaturase 1 gene reveals a stringent requirement of endogenous monounsaturated fatty acids for triglyceride synthesis. J. Lipid Res., 42(7):1018-1024.

[37]Miyazaki, M., Dobrzyn, A., Man, W.C., Chu, K., Sampath, H., Kim, H.J., Ntambi, J.M., 2004. Stearoyl-CoA desaturase 1 gene expression is necessary for fructose-mediated induction of lipogenic gene expression by sterol regulatory element-binding protein-1c-dependent and -independent mechanisms. J. Biol. Chem., 279(24):25164-25171.

[38]Nakamura, M.T., Nara, T.Y., 2004. Structure, function, and dietary regulation of Δ6, Δ5, and Δ9 desaturases. Annu. Rev. Nutr., 24(1):345-376.

[39]Ntambi, J.M., 1995. The regulation of stearoyl-CoA desaturase (SCD). Prog. Lipid Res., 34(2):139-150.

[40]Ntambi, J.M., Miyazaki, M., 2004. Regulation of stearoyl-CoA desaturases and role in metabolism. Prog. Lipid Res., 43(2):91-104.

[41]Ntambi, J.M., Miyazaki, M., Stoehr, J.P., Lan, H., Kendziorski, C.M., Yandell, B.S., Song, Y., Cohen, P., Friedman, J.M., Attie, A.D., 2002. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. PNAS, 99(17):11482-11486.

[42]Park, S.K., Meyer, T.W., 1992. The effects of fructose feeding on glomerular structure in the rat. J. Am. Soc. Nephrol., 3(6):1330-1332.

[43]Parks, E.J., Skokan, L.E., Timlin, M.T., Dingfelder, C.S., 2008. Dietary sugars stimulate fatty acid synthesis in adults. J. Nutr., 138(6):1039-1046.

[44]Riccardi, G., Giacco, R., Rivellese, A.A., 2004. Dietary fat, insulin sensitivity and the metabolic syndrome. Clin. Nutr., 23(4):447-456.

[45]Rustan, A.C., Nenseter, M.S., Drevon, C.A., 1997. Omega-3 and omega-6 fatty acids in the insulin resistance syndrome. Lipid and lipoprotein metabolism and atherosclerosis. Ann. N. Y. Acad. Sci., 827:310-326.

[46]Sampath, H., Miyazaki, M., Dobrzyn, A., Ntambi, J.M., 2007. Stearoyl-CoA desaturase-1 mediates the pro-lipogenic effects of dietary saturated fat. J. Biol. Chem., 282(4):2483-2493.

[47]Schmitz-Peiffer, C., Craig, D.L., Biden, T.J., 1999. Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J. Biol. Chem., 274(34):24202-24210.

[48]Shimomura, I., Bashmakov, Y., Horton, J.D., 1999. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J. Biol. Chem., 274(42):30028-30032.

[49]Shiose, A., Sumimoto, H., 2000. Arachidonic acid and phosphorylation synergistically induce a conformational change of p47phox to activate the phagocyte NADPH oxidase. J. Biol. Chem., 275(18):13793-13801.

[50]Simopoulos, A.P., 1997. Omega-6/omega-3 fatty acid ratio and trans fatty acids in non-insulin-dependent diabetes mellitus. Ann. N. Y. Acad. Sci., 827:327-338.

[51]Sjögren, P., Sierra-Johnson, J., Gertow, K., Rosell, M., Vessby, B., de Faire, U., Hamsten, A., Hellenius, M.L., Fisher, R.M., 2008. Fatty acid desaturases in human adipose tissue: relationships between gene expression, desaturation indexes and insulin resistance. Diabetologia, 51(2):328-335.

[52]Storlien, L.H., Pan, D.A., Kriketos, A.D., Baur, L.A., 1993. High fat diet-induced insulin resistance. Lessons and implications from animal studies. Ann. N. Y. Acad. Sci., 683:82-90.

[53]Takagawa, Y., Berger, M.E., Hori, M.T., Tuck, M.L., Golub, M.S., 2001. Long-term fructose feeding impairs vascular relaxation in rat mesenteric arteries. Am. J. Hypertens., 14(8):811-817.

[54]Thorburn, A.W., Storlien, L.H., Jenkins, A.B., Khouri, S., Kraegen, E.W., 1989. Fructose-induced in vivo insulin resistance and elevated plasma triglyceride levels in rats. Am. J. Clin. Nutr., 49(6):1155-1163.

[55]Thresher, J.S., Podolin, D.A., Wei, Y., Mazzeo, R.S., Pagliassotti, M.J., 2000. Comparison of the effects of sucrose and fructose on insulin action and glucose tolerance. Am. J. Physiol. Regul. Integr. Comp. Physiol., 279(4):R1334-R1340.

[56]Vazquez, M., Merlos, M., Adzet, T., Laguna, J., 1998. Influence of lipid profile and fatty acid composition on the oxidation behavior of rat and guinea pig low density lipoprotein. Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 119(2):311-316.

[57]Vessby, B., 2000. Dietary fat and insulin action in humans. Br. J. Nutr., 83(S1):S91-S96.

[58]Vraná, A., Fabry, P., Kazdová, L., 1978. Liver glycogen synthesis and glucose tolerance in rats adapted to diets with a high proportion of fructose or glucose. Nutr. Metab., 22(5):262-268.

[59]Waters, K.M., Ntambi, J.M., 1994. Insulin and dietary fructose induce stearoyl-CoA desaturase 1 gene expression of diabetic mice. J. Biol. Chem., 269(44):27773-27777.

[60]Wong, R.K., Pettit, A.I., Quinn, P.A., Jennings, S.C., Davies, J.E., Ng, L.L., 2003. Advanced glycation end products stimulate an enhanced neutrophil respiratory burst mediated through the activation of cytosolic phospholipase A2 and generation of arachidonic acid. Circulation, 108(15):1858-1864.

[61]Zammit, V.A., Waterman, I.J., Topping, D., McKay, G., 2001. Insulin stimulation of hepatic triacylglycerol secretion and the etiology of insulin resistance. J. Nutr., 131(8):2074-2077.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE