References
[1] Baddeley, D., Jayasinghe, I.D., Lam, L., 2009. Optical single-channel resolution imaging of the ryanodine receptor distribution in rat cardiac myocytes.
PNAS, 106(52):22275-22280.


[2] Banville, I., Gray, R.A., 2002. Effect of action potential duration and conduction velocity restitution and their spatial dispersion on alternans and the stability of arrhythmias.
J Cardiovasc Electrophysiol, 13(11):1141-1149.


[3] Benson, A.P., Aslanidi, O.V., Zhang, H., 2008. The canine virtual ventricular wall: a platform for dissecting pharmacological effects on propagation and arrhythmogenesis.
Prog Biophys Mol Biol, 96(1-3):187-208.


[4] Chen, Y., Escoubet, B., Prunier, F., 2004. Constitutive cardiac overexpression of sarcoplasmic/endoplasmic reticulum Ca
2+-ATPase delays myocardial failure after myocardial infarction in rats at a cost of increased acute arrhythmias.
Circulation, 109(15):1898-1903.


[5] Cheng, H., Lederer, W.J., Cannell, M.B., 1993. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle.
Science, 262(5134):740-744.


[6] Chudin, E., Goldhaber, J., Garfinkel, A., 1999. Intracellular Ca
2+ dynamics and the stability of ventricular tachycardia.
Biophys J, 77(6):2930-2941.


[7] Cordeiro, J.M., Malone, J.E., di Diego, J.M., 2007. Cellular and subcellular alternans in the canine left ventricle.
Am J Physiol Heart Circ Physiol, 293(6):H3506-H3516.


[8] Cutler, M.J., Wan, X., Laurita, K.R., 2009. Targeted SERCA2a gene expression identifies molecular mechanism and therapeutic target for arrhythmogenic cardiac alternans.
Circ Arrhythm Electrophysiol, 2(6):686-694.


[9] Cutler, M.J., Wan, X., Plummer, B.N., 2012. Targeted sarcoplasmic reticulum Ca
2+ ATPase 2a gene delivery to restore electrical stability in the failing heart.
Circulation, 126(17):2095-2104.


[10] Diaz, M.E., Trafford, A.W., ONeill, S.C., 1997. Measurement of sarcoplasmic reticulum Ca
2+ content and sarcolemmal Ca
2+ fluxes in isolated rat ventricular myocytes during spontaneous Ca
2+ release.
J Physiol, 501(1):3-16.


[11] Diaz, M.E., ONeill, S.C., Eisner, D.A., 2004. Sarcoplasmic reticulum calcium content fluctuation is the key to cardiac alternans.
Circ Res, 94(5):650-656.


[12] Dumitrescu, C., Narayan, P., Efimov, I.R., 2002. Mechanical alternans and restitution in failing SHHF rat left ventricles.
Am J Physiol Heart Circ Physiol, 282(4):H1320-H1326.


[13] Eisner, D.A., Diaz, M.E., Li, Y., 2005. Stability and instability of regulation of intracellular calcium.
Exp Physiol, 90(1):3-12.


[14] Fox, J.J., McHarg, J.L., Gilmour, R.F., 2002. Ionic mechanism of electrical alternans.
Am J Physiol Heart Circ Physiol, 282(2):H516-H530.


[15] Gaeta, S.A., Bub, G., Abbott, G.W., 2009. Dynamical mechanism for subcellular alternans in cardiac myocytes.
Circ Res, 105(4):335-342.


[16] Gilmour, R.F., Otani, N.F., Watanabe, M.A., 1997. Memory and complex dynamics in cardiac Purkinje fibers.
Am J Physiol, 272(4 Pt 2):H1826-H1832.

[17] Gold, M.R., Ip, J.H., Costantini, O., 2008. Role of microvolt T-wave alternans in assessment of arrhythmia vulnerability among patients with heart failure and systolic dysfunction: primary results from the T-wave alternans sudden cardiac death in heart failure trial substudy.
Circulation, 118(20):2022-2028.


[18] Greenstein, J.L., Winslow, R.L., 2011. Integrative systems models of cardiac excitation-contraction coupling.
Circ Res, 108(1):70-84.


[19] Hoffman, B.F., Suckling, E.E., 1954. Effect of heart rate on cardiac membrane potentials and the unipolar electrogram.
Am J Physiol, 179(1):123-130.

[20] Hund, T.J., Rudy, Y., 2004. Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model.
Circulation, 110(20):3168-3174.


[21] Huser, J., Wang, Y.G., Sheehan, K.A., 2000. Functional coupling between glycolysis and excitation-contraction coupling underlies alternans in cat heart cells.
J Physiol, 524(3):795-806.


[22] Jordan, P.N., Christini, D.J., 2007. Characterizing the contribution of voltage- and calcium-dependent coupling to action potential stability: implications for repolarization alternans.
Am J Physiol Heart Circ Physiol, 293(4):H2109-H2118.


[23] Karagueuzian, H.S., Khan, S.S., Hong, K., 1993. Action potential alternans and irregular dynamics in quinidine-intoxicated ventricular muscle cells. Implications for ventricular proarrhythmia.
Circulation, 87(5):1661-1672.


[24] Kihara, Y., Morgan, J.P., 1991. Abnormal Ca
i
2+ handling is the primary cause of mechanical alternans: study in ferret ventricular muscles.
Am J Physiol, 261(6 Pt 2):H1746-H1755.

[25] Kirchhof, P., Fabritz, L., Kilic, A., 2004. Ventricular arrhythmias, increased cardiac calmodulin kinase II expression, and altered repolarization kinetics in ANP receptor deficient mice.
J Mol Cell Cardiol, 36(5):691-700.


[26] Kleinfeld, M., Stein, E., Kossmann, C.E., 1963. Electrical alternans with emphasis on recent observations made by means of single-cell electrical recording.
Am Heart J, 65(4):495-500.


[27] Kockskamper, J., Blatter, L.A., 2002. Subcellular Ca
2+ alternans represents a novel mechanism for the generation of arrhythmogenic Ca
2+ waves in cat atrial myocytes.
J Physiol, 545(1):65-79.


[28] Koller, M.L., Riccio, M.L., Gilmour, R.F., 1998. Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation.
Am J Physiol, 275(5 Pt 2):H1635-H1642.

[29] Konta, T., Ikeda, K., Yamaki, M., 1990. Significance of discordant ST alternans in ventricular fibrillation.
Circulation, 82(6):2185-2189.


[30] Lehnart, S.E., Terrenoire, C., Reiken, S., 2006. Stabilization of cardiac ryanodine receptor prevents intracellular calcium leak and arrhythmias.
PNAS, 103(20):7906-7910.


[31] Li, Y., Diaz, M.E., Eisner, D.A., 2009. The effects of membrane potential, SR Ca
2+ content and RyR responsiveness on systolic Ca
2+ alternans in rat ventricular myocytes.
J Physiol, 587(6):1283-1292.


[32] Livshitz, L.M., Rudy, Y., 2007. Regulation of Ca
2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents.
Am J Physiol Heart Circ Physiol, 292(6):H2854-H2866.


[33] Lu, L., Xia, L., Ye, X., 2010. Simulation of the effect of rogue ryanodine receptors on a calcium wave in ventricular myocytes with heart failure.
Phys Biol, 7(2):026005


[34] Lyon, A.R., Bannister, M.L., Collins, T., 2011. SERCA2a gene transfer decreases sarcoplasmic reticulum calcium leak and reduces ventricular arrhythmias in a model of chronic heart failure.
Circ Arrhythm Electrophysiol, 4(3):362-372.


[35] Narayan, S.M., 2007. Is T-wave alternans as good or better than programmed ventricular stimulation?.
Heart Rhythm, 4(7):913-915.


[36] Nolasco, J.B., Dahlen, R.W., 1968. A graphic method for the study of alternation in cardiac action potentials.
J Appl Physiol, 25(2):191-196.

[37] ORourke, B., Kass, D.A., Tomaselli, G.F., 1999. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: experimental studies.
Circ Res, 84(5):562-570.


[38] Pastore, J.M., Rosenbaum, D.S., 2000. Role of structural barriers in the mechanism of alternans-induced reentry.
Circ Res, 87(12):1157-1163.


[39] Picht, E., DeSantiago, J., Blatter, L.A., 2006. Cardiac alternans do not rely on diastolic sarcoplasmic reticulum calcium content fluctuations.
Circ Res, 99(7):740-748.


[40] Pruvot, E.J., Katra, R.P., Rosenbaum, D.S., 2004. Role of calcium cycling versus restitution in the mechanism of repolarization alternans.
Circ Res, 94(8):1083-1090.


[41] Qian, Y.W., Sung, R.J., Lin, S.F., 2003. Spatial heterogeneity of action potential alternans during global ischemia in the rabbit heart.
Am J Physiol Heart Circ Physiol, 285(6):H2722-H2733.


[42] Qu, Z., Garfinkel, A., Chen, P.S., 2000. Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue.
Circulation, 102(14):1664-1670.


[43] Riccio, M.L., Koller, M.L., Gilmour, R.F., 1999. Electrical restitution and spatiotemporal organization during ventricular fibrillation.
Circ Res, 84(8):955-963.


[44] Rosenbaum, D.S., Jackson, L.E., Smith, J.M., 1994. Electrical alternans and vulnerability to ventricular arrhythmias.
N Engl J Med, 330(4):235-241.


[45] Rovetti, R., Cui, X., Garfinkel, A., 2010. Spark-induced sparks as a mechanism of intracellular calcium alternans in cardiac myocytes.
Circ Res, 106(10):1582-1591.


[46] Saitoh, H., Bailey, J.C., Surawicz, B., 1988. Alternans of action potential duration after abrupt shortening of cycle length: differences between dog Purkinje and ventricular muscle fibers.
Circ Res, 62(5):1027-1040.


[47] Sato, D., Shiferaw, Y., Qu, Z., 2007. Inferring the cellular origin of voltage and calcium alternans from the spatial scales of phase reversal during discordant alternans.
Biophys J, 92(4):L33-L35.


[48] Shannon, T.R., Ginsburg, K.S., Bers, D.M., 2000. Potentiation of fractional sarcoplasmic reticulum calcium release by total and free intra-sarcoplasmic reticulum calcium concentration.
Biophys J, 78(1):334-343.


[49] Shannon, T.R., Pogwizd, S.M., Bers, D.M., 2003. Elevated sarcoplasmic reticulum Ca
2+ leak in intact ventricular myocytes from rabbits in heart failure.
Circ Res, 93(7):592-594.


[50] Shannon, T.R., Wang, F., Bers, D.M., 2005. Regulation of cardiac sarcoplasmic reticulum Ca release by luminal [Ca] and altered gating assessed with a mathematical model.
Biophys J, 89(6):4096-4110.


[51] Shiferaw, Y., Watanabe, M.A., Garfinkel, A., 2003. Model of intracellular calcium cycling in ventricular myocytes.
Biophys J, 85(6):3666-3686.


[52] Shiferaw, Y., Sato, D., Karma, A., 2005. Coupled dynamics of voltage and calcium in paced cardiac cells.
Phys Rev E, 71(2 Pt 1):021903

[53] Tao, T., O'Neill, S.C., Diaz, M.E., 2008. Alternans of cardiac calcium cycling in a cluster of ryanodine receptors: a simulation study.
Am J Physiol Heart Circ Physiol, 295(2):H598-H609.


[54] ten Tusscher, K.H., Panfilov, A.V., 2006. Alternans and spiral breakup in a human ventricular tissue model.
Am J Physiol Heart Circ Physiol, 291(3):H1088-H1100.


[55] Traube, L., 1872. Ein Fall von Pulsus bigeminus nebst Bemerkungen über die Leberschwellungen bei Klappenfehlern und über acute Leberatrophie.
Berlin Klin Wochenschr, (in German),9:185-188.
[56] Wagner, S., Dybkova, N., Rasenack, E.C., 2006. Ca
2+/calmodulin-dependent protein kinase II regulates cardiac Na
+ channels.
J Clin Invest, 116(12):3127-3138.


[57] Walker, M.L., Rosenbaum, D.S., 2003. Repolarization alternans: implications for the mechanism and prevention of sudden cardiac death.
Cardiovasc Res, 57(3):599-614.


[58] Wan, X., Laurita, K.R., Pruvot, E.J., 2005. Molecular correlates of repolarization alternans in cardiac myocytes.
J Mol Cell Cardiol, 39(3):419-428.


[59] Wilson, L.D., Jeyaraj, D., Wan, X., 2009. Heart failure enhances susceptibility to arrhythmogenic cardiac alternans.
Heart Rhythm, 6(2):251-259.


[60] Windle, J.D., 1911. The incidence and prognostic value of the pulsus alternans in myocardial and arterial disease.
Quart J Med, 6(2617):453-462.
[61] Wohlfart, B., 1982. Analysis of mechanical alternans in rabbit papillary muscle.
Acta Physiol Scand, 115(4):405-414.


[62] Wu, Y., Temple, J., Zhang, R., 2002. Calmodulin kinase II and arrhythmias in a mouse model of cardiac hypertrophy.
Circulation, 106(10):1288-1293.


[63] Xie, L.H., Sato, D., Garfinkel, A., 2008. Intracellular Ca alternans: coordinated regulation by sarcoplasmic reticulum release, uptake, and leak.
Biophys J, 95(6):3100-3110.


[64] Zang, Y., Dai, L., Zhan, H., 2013. Theoretical investigation of the mechanism of heart failure using a canine ventricular cell model: especially the role of up-regulated CaMKII and SR Ca
2+ leak.
J Mol Cell Cardiol, 56:34-43.


[65] Zhao, X., Yamazaki, D., Park, K.H., 2010. Ca
2+ overload and sarcoplasmic reticulum instability in
tric-a null skeletal muscle.
J Biol Chem, 285(48):37370-37376.


Open peer comments: Debate/Discuss/Question/Opinion
<1>