Full Text:   <3138>

CLC number: R774.5

On-line Access: 2014-07-06

Received: 2013-07-19

Revision Accepted: 2013-11-07

Crosschecked: 2014-05-07

Cited: 0

Clicked: 7985

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2014 Vol.15 No.7 P.661-669


Effects of organic solvents on two retinal pigment epithelial lipofuscin fluorophores, A2E and all-trans-retinal dimer*

Author(s):  Qiu-xia Jin1, Xin-ran Dong2, Jing-meng Chen3, Ke Yao2, Ya-lin Wu1,2

Affiliation(s):  1. College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):   yalinw@zju.edu.cn

Key Words:  N-retinylidene-N-retinyl-ethanolamine (A2E), All-trans-retinal dimer, Lipofuscin, Organic solvents, Retinal pigment epithelial

Qiu-xia Jin, Xin-ran Dong, Jing-meng Chen, Ke Yao, Ya-lin Wu. Effects of organic solvents on two retinal pigment epithelial lipofuscin fluorophores, A2E and all-trans-retinal dimer[J]. Journal of Zhejiang University Science B, 2014, 15(7): 661-669.

@article{title="Effects of organic solvents on two retinal pigment epithelial lipofuscin fluorophores, A2E and all-trans-retinal dimer",
author="Qiu-xia Jin, Xin-ran Dong, Jing-meng Chen, Ke Yao, Ya-lin Wu",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Effects of organic solvents on two retinal pigment epithelial lipofuscin fluorophores, A2E and all-trans-retinal dimer
%A Qiu-xia Jin
%A Xin-ran Dong
%A Jing-meng Chen
%A Ke Yao
%A Ya-lin Wu
%J Journal of Zhejiang University SCIENCE B
%V 15
%N 7
%P 661-669
%@ 1673-1581
%D 2014
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1300194

T1 - Effects of organic solvents on two retinal pigment epithelial lipofuscin fluorophores, A2E and all-trans-retinal dimer
A1 - Qiu-xia Jin
A1 - Xin-ran Dong
A1 - Jing-meng Chen
A1 - Ke Yao
A1 - Ya-lin Wu
J0 - Journal of Zhejiang University Science B
VL - 15
IS - 7
SP - 661
EP - 669
%@ 1673-1581
Y1 - 2014
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1300194

Gene and drug therapies are being developed to alleviate vision loss in patients with Stargardt’s disease and age-related macular degeneration (AMD). To evaluate the therapeutic effects of these treatments, organic solvents are routinely used to extract and quantify bisretinoid lipofuscin constituents, such as N-retinylidene-N-retinyl-ethanolamine (A2E) and all-trans-retinal dimer (ATR-dimer). By high-performance liquid chromatography (HPLC), we found that A2E and ATR-dimer were both altered by tetrahydrofuran (THF) and chloroform, but were stable in dimethyl sulfoxide (DMSO) or methanol (MeOH). In addition, cyclohexane and ethanol (EtOH) did not alter ATR-dimer, whereas an alteration of A2E occurred in EtOH. On the basis of these findings, we designed processes II–IV, generated by modifications of process I, a routine method to measure bisretinoid compounds in vivo. Extra amounts of either ATR-dimer or A2E in mouse eyecups were released by processes II–IV versus process I. Efforts to clarify the effects of organic solvents on lipofuscin pigments are important because such studies can guide the handling of these fluorophores in related experiments.




Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1] Ahn, J., Wong, J.T., Molday, R.S., 2000. The effect of lipid environment and retinoids on the ATPase activity of ABCR, the photoreceptor ABC transporter responsible for Stargardt macular dystrophy. J Biol Chem, 275(27):20399-20405. 

[2] Allikmets, R., Singh, N., Sun, H., 1997. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet, 15(3):236-246. 

[3] Allocca, M., Doria, M., Petrillo, M., 2008. Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest, 118(5):1955-1964. 

[4] Ben-Shabat, S., Parish, C.A., Vollmer, H.R., 2002. Biosynthetic studies of A2E, a major fluorophore of retinal pigment epithelial lipofuscin. J Biol Chem, 277(9):7183-7190. 

[5] Chrispell, J.D., Feathers, K.L., Kane, M.A., 2009. Rdh12 activity and effects on retinoid processing in the murine retina. J Biol Chem, 284(32):21468-21477. 

[6] Fishkin, N.E., Sparrow, J.R., Allikmets, R., 2005. Isolation and characterization of a retinal pigment epithelial cell fluorophore: an all-trans-retinal dimer conjugate. PNAS, 102(20):7091-7096. 

[7] Holz, F.G., Schutt, F., Kopitz, J., 1999. Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci, 40(3):737-743. 

[8] Kim, S., Jang, Y., Jockusch, S., 2007. The all-trans-retinal dimer series of lipofuscin pigments in retinal pigment epithelial cells in a recessive Stargardt disease model. PNAS, 104(49):19273-19278. 

[9] Kong, J., Kim, S.R., Binley, K., 2008. Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene therapy. Gene Ther, 15(19):1311-1320. 

[10] Liu, J., Itagaki, Y., Ben-Shabat, S., 2000. The biosynthesis of A2E, a fluorophore of aging retina, involves the formation of the precursor, A2-PE, in the photoreceptor outer segment membrane. J Biol Chem, 275(38):29354-29360. 

[11] Maeda, A., Maeda, T., Sun, W., 2007. Redundant and unique roles of retinol dehydrogenases in the mouse retina. PNAS, 104(49):19565-19570. 

[12] Maiti, P., Kong, J., Kim, S.R., 2006. Small molecule RPE65 antagonists limit the visual cycle and prevent lipofuscin formation. Biochemistry, 45(3):852-860. 

[13] Parish, C.A., Hashimoto, M., Nakanishi, K., 1998. Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. PNAS, 95(25):14609-14613. 

[14] Radu, R.A., Mata, N.L., Nusinowitz, S., 2003. Treatment with isotretinoin inhibits lipofuscin accumulation in a mouse model of recessive Stargardt’s macular degeneration. PNAS, 100(8):4742-4747. 

[15] Radu, R.A., Han, Y., Bui, T.V., 2005. Reductions in serum vitamin A arrest accumulation of toxic retinal fluorophores: a potential therapy for treatment of lipofuscin-based retinal diseases. Invest Ophthalmol Vis Sci, 46(12):4393-4401. 

[16] Shroyer, N.F., Lewis, R.A., Allikmets, R., 1999. The rod photoreceptor ATP-binding cassette transporter gene, ABCR, and retinal disease: from monogenic to multifactorial. Vision Res, 39(15):2537-2544. 

[17] Sieving, P.A., Chaudhry, P., Kondo, M., 2001. Inhibition of the visual cycle in vivo by 13-cis-retinoic acid protects from light damage and provides a mechanism for night blindness in isotretinoin therapy. PNAS, 98(4):1835-1840. 

[18] Sparrow, J.R., Boulton, M., 2005. RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res, 80(5):595-606. 

[19] Sparrow, J.R., Parish, C.A., Hashimoto, M., 1999. A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Invest Ophthalmol Vis Sci, 40(12):2988-2995. 

[20] Sparrow, J.R., Nakanishi, K., Parish, C.A., 2000. The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci, 41(7):1981-1989. 

[21] Sparrow, J.R., Vollmer, H.R., Zhou, J., 2003. A2E-epoxides damage DNA in retinal pigment epithelial cells. J Biol Chem, 278(20):18207-18213. 

[22] Sparrow, J.R., Kim, S.R., Cuervo, A.M., 2008. A2E, a pigment of RPE lipofuscin is generated from the precursor A2PE by a lysosomal enzyme activity. Recent Advances in Retinal Degeneration. Advances in Experimental Medicine and Biology, Springer New York,613:393-398. 

[23] Sun, H., Molday, R.S., Nathans, J., 1999. Retinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt disease. J Biol Chem, 274(12):8269-8281. 

[24] Suter, M., Reme, C., Grimm, C., 2000. Age-related macular degeneration. The lipofusion component N-retinyl-N-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells. J Biol Chem, 275(50):39625-39630. 

[25] Vasireddy, V., Jablonski, M., Khan, N., 2009. Elovl4 5-bp deletion knock-in mouse model for Stargardt-like macular degeneration demonstrates accumulation of ELOVL4 and lipofusin. Exp Eye Res, 89(6):905-912. 

[26] Weng, J., Mata, N.L., Azarian, S.M., 1999. Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell, 98(1):13-23. 

[27] Wielgus, A.R., Chignell, C.F., Ceger, P., 2010. Comparison of A2E cytotoxicity and phototoxicity with all-trans-retinal in human retinal pigment epithelial cells. Photochem Photobiol, 86(4):781-791. 

[28] Wu, L., Nagasaki, T., Sparrow, J.R., 2010. Photoreceptor cell degeneration in Abcr −/− mice. Retinal Degenerative Diseases. Laboratory and Therapeutic Investigations. Advances in Experimental Medicine and Biology, Springer New York,664:533-539. 

[29] Wu, Y., Li, J., Yao, K., 2013. Structures and biogenetic analysis of lipofuscin bis-retinoids. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 14(9):763-773. 

[30] Yamamoto, K., Yoon, K.D., Ueda, K., 2011. A novel bisretinoid of retina is an adduct on glycerophosphoethanolamine. Invest Ophthalmol Vis Sci, 52(12):9084-9090. 

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE