Full Text:   <4173>

Summary:  <2232>

CLC number: Q95

On-line Access: 2015-06-08

Received: 2015-01-11

Revision Accepted: 2015-04-09

Crosschecked: 2015-05-07

Cited: 11

Clicked: 10003

Citations:  Bibtex RefMan EndNote GB/T7714


Jun-jun Wang


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2015 Vol.16 No.6 P.417-435


Within-litter variation in birth weight: impact of nutritional status in the sow

Author(s):  Tao-lin Yuan, Yu-hua Zhu, Meng Shi, Tian-tian Li, Na Li, Guo-yao Wu, Fuller W. Bazer, Jian-jun Zang, Feng-lai Wang, Jun-jun Wang

Affiliation(s):  State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; more

Corresponding email(s):   jkywjj@hotmail.com

Key Words:  Within-litter variation, Pig, Mortality, Morbidity, Growth, Sow nutrition

Tao-lin Yuan, Yu-hua Zhu, Meng Shi, Tian-tian Li, Na Li, Guo-yao Wu, Fuller W. Bazer, Jian-jun Zang, Feng-lai Wang, Jun-jun Wang. Within-litter variation in birth weight: impact of nutritional status in the sow[J]. Journal of Zhejiang University Science B, 2015, 16(6): 417-435.

@article{title="Within-litter variation in birth weight: impact of nutritional status in the sow",
author="Tao-lin Yuan, Yu-hua Zhu, Meng Shi, Tian-tian Li, Na Li, Guo-yao Wu, Fuller W. Bazer, Jian-jun Zang, Feng-lai Wang, Jun-jun Wang",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Within-litter variation in birth weight: impact of nutritional status in the sow
%A Tao-lin Yuan
%A Yu-hua Zhu
%A Meng Shi
%A Tian-tian Li
%A Na Li
%A Guo-yao Wu
%A Fuller W. Bazer
%A Jian-jun Zang
%A Feng-lai Wang
%A Jun-jun Wang
%J Journal of Zhejiang University SCIENCE B
%V 16
%N 6
%P 417-435
%@ 1673-1581
%D 2015
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1500010

T1 - Within-litter variation in birth weight: impact of nutritional status in the sow
A1 - Tao-lin Yuan
A1 - Yu-hua Zhu
A1 - Meng Shi
A1 - Tian-tian Li
A1 - Na Li
A1 - Guo-yao Wu
A1 - Fuller W. Bazer
A1 - Jian-jun Zang
A1 - Feng-lai Wang
A1 - Jun-jun Wang
J0 - Journal of Zhejiang University Science B
VL - 16
IS - 6
SP - 417
EP - 435
%@ 1673-1581
Y1 - 2015
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1500010

Accompanying the beneficial improvement in litter size from genetic selection for high-prolificacy sows, within-litter variation in birth weight has increased with detrimental effects on post-natal growth and survival due to an increase in the proportion of piglets with low birth-weight. Causes of within-litter variation in birth weight include breed characteristics that affect uterine space, ovulation rate, degree of maturation of oocytes, duration of time required for ovulation, interval between ovulation and fertilization, uterine capacity for implantation and placentation, size and efficiency of placental transport of nutrients, communication between conceptus/fetus and maternal systems, as well as nutritional status and environmental influences during gestation. Because these factors contribute to within-litter variation in birth weight, nutritional status of the sow to improve fetal-placental development must focus on the following three important stages in the reproductive cycle: pre-mating or weaning to estrus, early gestation and late gestation. The goal is to increase the homogeneity of development of oocytes and conceptuses, decrease variations in conceptus development during implantation and placentation, and improve birth weights of newborn piglets. Though some progress has been made in nutritional regulation of within-litter variation in the birth weight of piglets, additional studies, with a focus on and insights into molecular mechanisms of reproductive physiology from the aspects of maternal growth and offspring development, as well as their regulation by nutrients provided to the sow, are urgently needed.



Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Adashi, E.Y., Hsueh, A., Yen, S., 1981. Insulin enhancement of luteinizing-hormone and follicle-stimulating-hormone release by cultured pituitary-cells. Endocrinology, 108(4):1441-1449.

[2]Anderson, L.L., 1978. Growth, protein content and distribution of early pig embryos. Anat. Rec., 190(1):143-153.

[3]Antipatis, C., Finch, A.M., Ashworth, C.J., 2008. Effect of controlled alterations in maternal dietary retinol on foetal and neonatal retinol status and pregnancy outcome in pigs. Livest. Sci., 118(3):247-254.

[4]Argente, M.J., Santacreu, M.A., Climent, A., et al., 2006. Influence of available uterine space per fetus on fetal development and prenatal survival in rabbits selected for uterine capacity. Livest. Sci., 102(1-2):83-91.

[5]Argente, M.J., Santacreu, M.A., Climent, A., et al., 2008. Effects of intrauterine crowding on available uterine space per fetus in rabbits. Livest. Sci., 114(2-3):211-219.

[6]Arroyo, J.A., Winn, V.D., 2008. Vasculogenesis and angiogenesis in the IUGR placenta. Semin. Perinatol., 32(3):172-177.

[7]Ashworth, C.J., Antipatis, C., 1999. Effects of pre- and post-mating nutrition on embryo survival in gilts. Reprod. Domest. Anim., 34(3-4):103-108.

[8]Ashworth, C.J., Beattie, L., Antipatis, C., et al., 1999. Effects of pre- and post-mating feed intake on blastocyst size, secretory function and glucose metabolism in Meishan gilts. Reprod. Fert. Dev., 11(6):323-327.

[9]Athorn, R.Z., Stott, P., Bouwman, E.G., et al., 2013. Effect of feeding level on luteal function and progesterone concentration in the vena cava during early pregnancy in gilts. Reprod. Fert. Dev., 25(3):531-538.

[10]Aucott, S.W., Donohue, P.K., Northington, F.J., 2004. Increased morbidity in severe early intrauterine growth restriction. J. Perinatol., 24(7):435-440.

[11]Auldist, D.E., King, R.H., 1995. Piglets’ role in determining milk production in the sow. In: Hennessy, D.P., Cranwell, P.D. (Eds.), Manipulating Pig Production V. Australasian Pig Science Association, Werribee, Australia, p.114-118.

[12]Batshaw, M.L., Brusilow, S.W., 1978. Asymptomatic hyper-ammonemia in low-birth-weight infants. Pediatr. Res., 12(3):221-224.

[13]Bazer, F.W., 2013. Pregnancy recognition signaling mechanisms in ruminants and pigs. J. Anim. Sci. Biotech., 4(1):23.

[14]Bazer, F.W., Thatcher, W.W., 1977. Theory of maternal recognition of pregnancy in swine based on estrogen controlled endocrine versus exocrine secretion of prostaglandin-f2α by uterine endometrium. Prostaglandins, 14(2):397-401.

[15]Bazer, F.W., Johnson, G.A., 2014. Pig blastocyst-uterine interactions. Differentiation, 87(1-2):52-65.

[16]Bazer, F.W., Thatcher, W.W., Martinatbotte, F., et al., 1988. Conceptus development in large white and prolific Chinese Meishan pigs. J. Reprod. Fert., 84(1):37-42.

[17]Bazer, F.W., Wu, G., Johnson, G.A., et al., 2014. Environmental factors affecting pregnancy: endocrine disrupters, nutrients and metabolic pathways. Mol. Cell. Endocrinol., 398(1-2):53-68.

[18]Bell, A.W., Ehrhardt, R.A., 2002. Regulation of placental nutrient transport and implications for fetal growth. Nutr. Res. Rev., 15(2):211-230.

[19]Bereskin, B., Shelby, C.E., Cox, D.F., 1973. Some factors affecting pig survival. J. Anim. Sci., 36(5):821-827.

[20]Besenfelder, U., Solti, L., Seregi, J., et al., 1996. Different roles for B-carotene and vitamin A in the reproduction on rabbits. Theriogenology, 45(8):1583-1591.

[21]Biensen, N.J., Wilson, M.E., Ford, S.P., 1998. The impact of either a Meishan or Yorkshire uterus on Meishan or Yorkshire fetal and placental development to days 70, 90, and 110 of gestation. J. Anim. Sci., 76(8):2169-2176.

[22]Blachier, F., Davila, A.M., Benamouzig, R., et al., 2011. Channelling of arginine in NO and polyamine pathways in colonocytes and consequences. Front. Biosci. (Landmark Ed.), 16(1):1331-1343.

[23]Blomberg, L.A., Long, E.L., Sonstegard, T.S., et al., 2005. Serial analysis of gene expression during elongation of the peri-implantation porcine trophectoderm (conceptus). Physiol. Genomics, 20(2):188-194.

[24]Blomberg, L.A., Schreier, L., Li, R.W., 2010. Characteristics of peri-implantation porcine concepti population and maternal milieu influence the transcriptome profile. Mol. Reprod. Dev., 77(11):978-989.

[25]Boshier, D.P., 1969. A histological and histochemical examination of implantation and early placentome formation in sheep. J. Reprod. Fert., 19(1):51-61.

[26]Broekmans, F.J., Soules, M.R., Fauser, B.C., 2009. Ovarian aging: mechanisms and clinical consequences. Endocr. Rev., 30(5):465-493.

[27]Canario, L., Cantoni, E., Le Bihan, E., et al., 2006. Between-breed variability of stillbirth and its relationship with sow and piglet characteristics. J. Anim. Sci., 84(12):3185-3196.

[28]Canario, L., Lundgren, H., Haandlykken, M., et al., 2010. Genetics of growth in piglets and the association with homogeneity of body weight within litters. J. Anim. Sci., 88(4):1240-1247.

[29]Coffey, M.T., Britt, J.H., 1993. Enhancement of sow reproductive-performance by β-carotene or vitamin-A. J. Anim. Sci., 71(5):1198-1202.

[30]Cossu, G., Borello, U., 1999. Wnt signaling and the activation of myogenesis in mammals. EMBO J., 18(24):6867-6872.

[31]Cox, N.M., Stuart, M.J., Althen, T.G., et al., 1987. Enhancement of ovulation rate in gilts by increasing dietary energy and administering insulin during follicular-growth. J. Anim. Sci., 64(2):507-516.

[32]Cromi, A., Ghezzi, F., Raffaelli, R., et al., 2009. Ultrasonographic measurement of thymus size in IUGR fetuses: a marker of the fetal immunoendocrine response to malnutrition. Ultrasound Obst. Gyn., 33(4):421-426.

[33]Damgaard, L.H., Rydhmer, L., Lovendahl, P., et al., 2003. Genetic parameters for within-litter variation in piglet birth weight and change in within-litter variation during suckling. J. Anim. Sci., 81(3):604-610.

[34]Dewey, C.E., Martin, S.W., Friendship, R.M., et al., 1995. Associations between litter size and specific sow-level management factors in Ontario swine. Prev. Vet. Med., 23(1-2):101-110.

[35]Dhindsa, D.S., Dziuk, P.J., 1968. Influence of varying the proportion of uterus occupied by embryos on maintenance of pregnancy in the pig. J. Anim. Sci., 27(3):668-672.

[36]Du, M., Tong, J., Zhao, J., et al., 2010. Fetal programming of skeletal muscle development in ruminant animals. J. Anim. Sci., 88(13 Suppl.):E51-E60.

[37]EAAP, 2011. Book of Abstracts of the 62nd Annual Meeting of the European Association for Animal Production: Stavanger, Norway, Vol. 17, Wageningen Academic Pub.

[38]Estany, J., Sorensen, D., 1995. Estimation of genetic-parameters for litter size in Danish-Landrace and Yorkshire pigs. Anim. Sci., 60(2):315-324.

[39]Faber, J.J., Thornburg, K.L., 1983. Placental Physiology. Structure and Function of Fetomaternal Exchange. Raven Press, New York, p.1-192.

[40]Fahmy, M.H., Bernard, C., 1971. Cause of mortality in Yorkshire pigs from birth to 20 weeks of age. Can. J. Anim. Sci., 51(2):351-359.

[41]Ferguson, E.M., Ashworth, C.J., Edwards, S.A., et al., 2003. Effect of different nutritional regimens before ovulation on plasma concentrations of metabolic and reproductive hormones and oocyte maturation in gilts. Reproduction, 126(1):61-71.

[42]Ferguson, E.M., Slevin, J., Edwards, S.A., et al., 2006. Effect of alterations in the quantity and composition of the pre-mating diet on embryo survival and foetal growth in the pig. Anim. Reprod. Sci., 96(1-2):89-103.

[43]Flint, A., Burton, R.D., Gadsby, J.E., et al., 1979. Blastocyst oestrogen synthesis and the maternal recognition of pregnancy. Ciba. Found. Symp., 64:209-238.

[44]Ford, S.P., Reynolds, L.P., Magness, R.R., 1982. Blood flow to the uterine and ovarian vascular beds of gilts during the estrous cycle or early pregnancy. Biol. Reprod., 27(4):878-885.

[45]Fowden, A.L., Giussani, D.A., Forhead, A.J., 2005. Endocrine and metabolic programming during intrauterine development. Early Hum. Dev., 81(9):723-734.

[46]Foxcroft, G.R., Dixon, W.T., Novak, S., et al., 2006. The biological basis for prenatal programming of postnatal performance in pigs. J. Anim. Sci., 84(13 Suppl.):E105-E112.

[47]Foxcroft, G.R., Vinsky, M.D., Paradis, F., et al., 2007. Macroenvironment effects on oocytes and embryos in swine. Theriogenology, 68(Suppl. 1):S30-S39.

[48]Fraser, D., Thompson, B.K., Ferguson, D.K., et al., 1979. The ‘teat order’ of suckling pigs: 3. Relation to competition within litters. J. Agric. Sci., 92(2):257-261.

[49]Gao, K., Jiang, Z., Lin, Y., et al., 2012. Dietary L-arginine supplementation enhances placental growth and reproductive performance in sows. Amino Acids, 42(6):2207-2214.

[50]García, M.L., Baselga, M., 2002. Estimation of genetic response to selection in litter size of rabbits using a cryopreserved control population. Livest. Prod. Sci., 74(1):45-53.

[51]Gardner, D.S., Powlson, A.S., Giussani, D.A., 2001. An in vivo nitric oxide clamp to investigate the influence of nitric oxide on continuous umbilical blood flow during acute hypoxaemia in the sheep fetus. J. Physiol., 537(2):587-596.

[52]Garreau, H., Bolet, G., Hurtaud, J., et al., 2004. Genetic homogenization of a character. Preliminary results of a canalising selection on the birth weight of young rabbits. ITEA Prod. Anim., 100A(3):172-178 (in Spanish).

[53]Geisert, R.D., Renegar, R.H., Thatcher, W.W., et al., 1982a. Establishment of pregnancy in the pig: I. Interrelationships between preimplantation development of the pig blastocyst and uterine endometrial secretions. Biol. Reprod., 27(4):925-939.

[54]Geisert, R.D., Brookbank, J.W., Roberts, R.M., et al., 1982b. Establishment of pregnancy in the pig: II. Cellular remodeling of the porcine blastocyst during elongation on Day 12 of pregnancy. Biol. Reprod., 27(4):941-955.

[55]Geisert, R.D., Lucy, M.C., Whyte, J.J., et al., 2014. Cytokines from the pig conceptus: roles in conceptus development in pigs. J. Anim. Sci. Biotechnol., 5(1):51.

[56]Gill, J.C., Thomson, W., 1956. Observations on the behaviour of suckling pigs. Brit. J. Anim. Behav., 4(2):46-51.

[57]Giudice, L.C., 1992. Insulin-like growth-factors and ovarian follicular development. Endocr. Rev., 13(4):641-669.

[58]Gondret, F., Lefaucheur, L., Louveau, I., et al., 2005. The long-term influences of birth weight on muscle characteristics and eating meat quality in pigs individually reared and fed during fattening. Arch. Tierzucht., 48:68-73.

[59]Greenberg, S.S., Lancaster, J.R., Xie, J.M., et al., 1997. Effects of NO synthase inhibitors, arginine-deficient diet, and amiloride in pregnant rats. Am. J. Physiol., 273(3):R1031-R1045.

[60]Hammond, J.M., Mondschein, J.S., Samaras, S.E., et al., 1991. The ovarian insulin-like growth-factors, a local amplification mechanism for steroidogenesis and hormone action. J. Steroid Biochem. Mol. Biol., 40(1-3):411-416.

[61]Hanahan, D., 1997. Signaling vascular morphogenesis and maintenance. Science, 277(5322):48-50.

[62]Harney, J.P., Mirando, M.A., Smith, L.C., et al., 1990. Retinol-binding protein—a major secretory product of the pig conceptus. Biol. Reprod., 42(3):523-532.

[63]Hayden, M.S., Ghosh, S., 2012. NF-B, the first quarter-century: remarkable progress and outstanding questions. Gene Dev., 26(3):203-234.

[64]Hazeleger, W., Ramaekers, P., Smits, C., et al., 2007. Influence of nutritional factors on placental growth and piglet imprinting. In: Wiseman, J., Varley, M.A., McOrist, S. (Eds.), Paradigms in Pig Science. Nottingham University Press, Nottingham, p.309-327.

[65]Heap, R.B., Flint, A., Gadsby, J.E., et al., 1979. Hormones, the early embryo and the uterine environment. J. Reprod. Fert., 55(1):267-275.

[66]Hughes, P.E., 1998. Effects of parity, season and boar contact on the reproductive performance of weaned sows. Livest. Prod. Sci., 54(2):151-157.

[67]Jobgen, W.S., Fried, S.K., Fu, W.J., et al., 2006. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J. Nutr. Biochem., 17(9):571-588.

[68]Johnson, R.K., Nielsen, M.K., Casey, D.S., 1999. Responses in ovulation rate, embryonal survival, and litter traits in swine to 14 generations of selection to increase litter size. J. Anim. Sci., 77(3):541-557.

[69]Kapell, D.N.R.G., Ashworth, C.J., Knap, P.W., et al., 2011. Genetic parameters for piglet survival, litter size and birth weight or its variation within litter in sire and dam lines using Bayesian analysis. Livest. Sci., 135(2-3):215-224.

[70]Kemp, B., Soede, N.M., Helmond, F.A., et al., 1995. Effects of energy source in the diet on reproductive hormones and insulin during lactation and subsequent estrus in multiparous sows. J. Anim. Sci., 73(10):3022-3029.

[71]Keys, J.L., King, G.J., Kennedy, T.G., 1986. Increased uterine vascular-permeability at the time of embryonic attachment in the pig. Biol. Reprod., 34(2):405-411.

[72]Kim, J., Burghardt, R.C., Wu, G., et al., 2011. Select nutrients in the ovine uterine lumen. VII. Effects of arginine, leucine, glutamine, and glucose on trophectoderm cell signaling, proliferation, and migration. Biol. Reprod., 84(1):62-69.

[73]Kim, S.W., Hurley, W.L., Han, I.K., et al., 2000. Growth of nursing pigs related to the characteristics of nursed mammary glands. J. Anim. Sci., 78(5):1313-1318.

[74]Kim, S.W., Hurley, W.L., Wu, G., et al., 2009. Ideal amino acid balance for sows during gestation and lactation. J. Anim. Sci., 87(14 Suppl.):E123-E132.

[75]Kim, S.W., Weaver, A.C., Shen, Y.B., et al., 2013. Improving efficiency of sow productivity: nutrition and health. J. Anim. Sci. Biotechnol., 4(1):26.

[76]King, G.J., Atkinson, B.A., Robertson, H.A., 1982. Implantation and early placentation in domestic ungulates. J. Reprod. Fertil. Suppl., 31:17-30.

[77]King, R.H., Mullan, B.P., Dunshea, F.R., et al., 1997. The influence of piglet body weight on milk production of sows. Livest. Prod. Sci., 47(2):169-174.

[78]Kiserud, T., Acharya, G., 2004. The fetal circulation. Prenatal Diag., 24(13):1049-1059.

[79]Knight, J.W., Bazer, F.W., Thatcher, W.W., et al., 1977. Conceptus development in intact and unilaterally hysterectomized-ovariectomized gilts: interrelations among hormonal status, placental development, fetal fluids and fetal growth. J. Anim. Sci., 44(4):620-637.

[80]Knol, E.F., Leenhouwers, J.I., van der Lende, T., 2002. Genetic aspects of piglet survival. Livest. Prod. Sci., 78(1):47-55.

[81]Kong, X.F., Tan, B.E., Yin, Y.L., et al., 2012. L-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. J. Nutr. Biochem., 23(9):1178-1183.

[82]Kong, X.F., Wang, X.Q., Yin, Y.L., et al., 2014. Putrescine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. Biol. Reprod., 91(5):106.

[83]Le Dividich, J., 1999. A review—neonatal and weaner pig: management to reduce variation. In: Manipulating Pig Production VII: Proceedings of the seventh biennial conference of the Australasian Pig Science Association (APSA). Adelaide, South Australia, p.135-155.

[84]Le Dividich, J., Noblet, J., Herpin, P., et al., 1998. Thermoregulation. In: Wiseman, J., Varley, M.A., Chadwick, J.P. (Eds.), Progress in Pig Science. Nottingham University Press, p.229-263.

[85]Le Dividich, J., Rooke, J.A., Herpin, P., 2005. Nutritional and immunological importance of colostrum for the new-born pig. J. Agric. Sci., 143(6):469-485.

[86]Lee, G.J., Haley, C.S., 1995. Comparative farrowing to weaning performance in Meishan and Large White pigs and their crosses. Anim. Sci., 60(2):269-280.

[87]Lei, J., Feng, D.Y., Zhang, Y.L., et al., 2012. Nutritional and regulatory role of branched-chain amino acids in lactation. Front. Biosci. (Landmark Ed.), 17(7):2725-2739.

[88]Lei, J., Feng, D.Y., Zhang, Y.L., et al., 2013. Hormonal regulation of leucine catabolism in mammary epithelial cells. Amino Acids, 45(3):531-541.

[89]Li, W., Zhong, X., Zhang, L., et al., 2012. Heat shock protein 70 expression is increased in the liver of neonatal intrauterine growth retardation piglets. Asian Australas. J. Anim. Sci., 25(8):1096-1101.

[90]Li, X., Bazer, F.W., Johnson, G.A., et al., 2010. Dietary supplementation with 0.8% L-arginine between days 0 and 25 of gestation reduces litter size in gilts. J. Nutr., 140(6):1111-1116.

[91]Li, X., Bazer, F.W., Johnson, G.A., et al., 2014. Dietary supplementation with L-arginine between days 14 and 25 of gestation enhances embryonic development and survival in gilts. Amino Acids, 46(2):375-384.

[92]Lin, G., Liu, C., Feng, C., et al., 2012. Metabolomic analysis reveals differences in umbilical vein plasma metabolites between normal and growth-restricted fetal pigs during late gestation. J. Nutr., 142(6):990-998.

[93]Lin, G., Wang, X., Wu, G., et al., 2014. Improving amino acid nutrition to prevent intrauterine growth restriction in mammals. Amino Acids, 46(7):1605-1623.

[94]Liu, C., Lin, G., Wang, X., et al., 2013. Intrauterine growth restriction alters the hepatic proteome in fetal pigs. J. Nutr. Biochem., 24(6):954-959.

[95]Liu, X.D., Wu, X., Yin, Y.L., et al., 2012. Effects of dietary L-arginine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGFA and eNOS expression in umbilical vein. Amino Acids, 42(6):2111-2119.

[96]Lund, M.S., Puonti, M., Rydhmer, L., et al., 2002. Relationship between litter size and perinatal and pre-weaning survival in pigs. Anim. Sci., 74(2):217-222.

[97]Matamoros, I.A., Cox, N.M., Moore, A.B., 1990. Exogenous insulin and additional energy affect follicular distribution, follicular steroid concentrations, and granulosa-cell human chorionic-gonadotropin binding in swine. Biol. Reprod., 43(1):1-7.

[98]Mateo, R.D., Wu, G., Bazer, F.W., et al., 2007. Dietary L-arginine supplementation enhances the reproductive performance of gilts. J. Nutr., 137(3):652-656.

[99]Maul, H., Longo, M., Saade, G.R., et al., 2003. Nitric oxide and its role during pregnancy: from ovulation to delivery. Curr. Pharm. Design, 9(5):359-380.

[100]McBride, G., 1963. The “teat order” and communication in your pigs. Anim. Behav., 11(1):53-56.

[101]McCrabb, G.J., Harding, R., 1996. Role of nitric oxide in the regulation of cerebral blood flow in the ovine foetus. Clin. Exp. Pharmacol. Physiol., 23(10-11):855-860.

[102]Meegdes, B.H., Ingenhoes, R., Peeters, L.L., et al., 1988. Early pregnancy wastage: relationship between chorionic vascularization and embryonic development. Fertil. Steril., 49(2):216-220.

[103]Milligan, B.N., Fraser, D., Kramer, D.L., 2001. Birth weight variation in the domestic pig: effects on offspring survival, weight gain and suckling behaviour. Appl. Anim. Behav. Sci., 73(3):179-191.

[104]Milligan, B.N., Dewey, C.E., de Grau, A.F., 2002a. Neonatal-piglet weight variation and its relation to pre-weaning mortality and weight gain on commercial farms. Prev. Vet. Med., 56(2):119-127.

[105]Milligan, B.N., Fraser, D., Kramer, D.L., 2002b. Within-litter birth weight variation in the domestic pig and its relation to pre-weaning survival, weight gain, and variation in weaning weights. Livest. Prod. Sci., 76(1-2):181-191.

[106]Nielsen, B., Su, G., Lund, M.S., et al., 2013. Selection for increased number of piglets at d 5 after farrowing has increased litter size and reduced piglet mortality. J. Anim. Sci., 91(6):2575-2582.

[107]Père, M.C., Etienne, M., 2000. Uterine blood flow in sows: effects of pregnancy stage and litter size. Reprod. Nutr. Dev., 40(4):369-382.

[108]Perry, J.S., Rowell, J.G., 1969. Variation in foetal weight and vascular supply along the uterine horn of the pig. J. Reprod. Fertil., 19(3):527-534.

[109]Perry, J.S., Heap, R.B., Amoroso, E.C., 1973. Steroid hormone production by pig blastocysts. Nature, 245(5419):45-47.

[110]Perry, J.S., Heap, R.B., Burton, R.D., et al., 1976. Endocrinology of the blastocyst and its role in the establishment of pregnancy. J. Reprod. Fertil. Suppl., (25):85-104.

[111]Petters, R.M., Johnson, B.H., Reed, M.L., et al., 1990. Glucose, glutamine and inorganic-phosphate in early development of the pig embryo in vitro. J. Reprod. Fertil., 89(1):269-275.

[112]Pettigrew, J.E., Cornelius, S.G., Moser, R.L., et al., 1986. Effects of oral doses of corn oil and other factors on preweaning survival and growth of pigs. J. Anim. Sci., 62(3):601-612.

[113]Politis, I., Chronopoulou, R., 2008. Milk peptides and immune response in the neonate. In: Bösze, Z. (Ed.), Bioactive Components of Milk. Advances in Experimental Medicine and Biology. Vol. 606, Springer New York, p.253-269.

[114]Pomeroy, R.W., 1960. Infertility and neonatal mortality in the sow. I. Lifetime performance and reasons for disposal of sows. J. Agric. Sci., 54(1):1-17.

[115]Pond, W.G., Houpt, K.A., 1978. The Biology of the Pig. Comstock Pub. Associates, p.371.

[116]Pope, W.F., Wilde, M.H., Xie, S., 1988. Effect of electrocautery of nonovulated day 1 follicles on subsequent morphological variation among day 11 porcine embryos. Biol. Reprod., 39(4):882-887.

[117]Pope, W.F., Xie, S., Broermann, D.M., et al., 1990. Causes and consequences of early embryonic diversity in pigs. J. Reprod. Fertil. Suppl., 40:251-260.

[118]Prunier, A., Dourmad, J.Y., Etienne, M., 1993. Feeding level, metabolic parameters and reproductive-performance of primiparous sows. Livest. Prod. Sci., 37(1-2):185-196.

[119]Puppe, B., Tuchscherer, A., 1999. Developmental and territorial aspects of suckling behaviour in the domestic pig (Sus scrofa f. domestica). J. Zool., 249(3):307-313.

[120]Quesnel, H., Brossard, L., Valancogne, A., et al., 2008. Influence of some sow characteristics on within-litter variation of piglet birth weight. Animal, 2(12):1842.

[121]Quesnel, H., Farmer, C., Devillers, N., 2012. Colostrum intake: influence on piglet performance and factors of variation. Livest. Sci., 146(2-3):105-114.

[122]Quesnel, H., Quiniou, N., Roy, H., et al., 2014. Supplying dextrose before insemination and L-arginine during the last third of pregnancy in sow diets: effects on within-litter variation of piglet birth weight. J. Anim. Sci., 92(4):1445-1450.

[123]Quiniou, N., Dagorna, J., Gaudre, D., 2002. Variation of piglets birth weight and consequences on subsequent performance. Livest. Prod. Sci., 78(1):63-70.

[124]Ran, R., Lu, A., Zhang, L., et al., 2004. Hsp70 promotes TNF-mediated apoptosis by binding IKKγ and impairing NF-κB survival signaling. Genes Dev., 18(12):1466-1481.

[125]Redmer, D.A., Wallace, J.M., Reynolds, L.P., 2004. Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development. Domest. Anim. Endocrinol., 27(3):199-217.

[126]Reynolds, L.P., Redmer, D.A., 1992. Growth and microvascular development of the uterus during early pregnancy in ewes. Biol. Reprod., 47(5):698-708.

[127]Reynolds, L.P., Redmer, D.A., 1995. Utero-placental vascular development and placental function. J. Anim. Sci., 73(6):1839-1851.

[128]Reynolds, L.P., Redmer, D.A., 2001. Angiogenesis in the placenta. Biol. Reprod., 64(4):1033-1040.

[129]Reynolds, L.P., Magness, R.R., Ford, S.P., 1984. Uterine blood flow during early pregnancy in ewes: interaction between the conceptus and the ovary bearing the corpus luteum. J. Anim. Sci., 58(2):423-429.

[130]Reynolds, L.P., Caton, J.S., Redmer, D.A., et al., 2006. Evidence for altered placental blood flow and vascularity in compromised pregnancies. J. Physiol., 572(1):51-58.

[131]Rezaei, R., Knabe, D.A., Li, X., et al., 2011. Enhanced efficiency of milk utilization for growth in surviving low-birth-weight piglets. J. Anim. Sci. Biotechnol., 2(2):73-83.

[132]Rezaei, R., Wang, W.W., Wu, Z.L., et al., 2013a. Biochemical and physiological bases for utilization of dietary amino acids by young pigs. J. Anim. Sci. Biotechnol., 4(1):7.

[133]Rezaei, R., Knabe, D.A., Tekwe, C.D., et al., 2013b. Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids, 44(3):911-923.

[134]Robertson, J.A., 1997. Investigations of the action of vitamin A and β carotene on reproductive performance in pigs. PhD Thesis, Victoria University of Technology, Australia.

[135]Robertson, J.A., Towstoless, M.K., Ott, T.L., et al., 1997. Effect of retinol palmitate on ovarian follicle size and follicular hormone concentration in the gilt. Biol. Reprod., 56(1):452.

[136]Rooke, J.A., Bland, I.M., 2002. The acquisition of passive immunity in the new-born piglet. Livest. Prod. Sci., 78(1):13-23.

[137]Rosahn, P.D., Greene, H.S.N., 1936. The influence of intrauterine factors on the fetal weight of rabbits. J. Exp. Med., 63(6):901-921.

[138]Ross, J.W., Ashworth, M.D., Hurst, A.G., et al., 2003. Analysis and characterization of differential gene expression during rapid trophoblastic elongation in the pig using suppression subtractive hybridization. Reprod. Biol. Endocrinol., 1(1):23.

[139]Savietto, D., Cervera, C., Rodenas, L., et al., 2014. Different resource allocation strategies result from selection for litter size at weaning in rabbit does. Animal, 8(4):618-628.

[140]Schweigert, F.J., Bonitz, K., Siegling, C., et al., 1999. Distribution of vitamin A, retinol-binding protein, cellular retinoic acid-binding protein I, and retinoid X receptor β in the porcine uterus during early gestation. Biol. Reprod., 61(4):906-911.

[141]Self, J.T., Spencer, T.E., Johnson, G.A., et al., 2004. Glutamine synthesis in the developing porcine placenta. Biol. Reprod., 70(5):1444-1451.

[142]Sharpe, H.B., 1966. Pre-weaning mortality in a herd of Large White pigs. Brit. Vet. J., 122(3):99-111.

[143]Soede, N.M., Noordhuizen, J.P.T.M., Kemp, B., 1992. The duration of ovation in pigs, studied by transrectal ultrasonography, is not related to early embryonic diversity. Theriogenology, 38(4):653-666.

[144]Southwood, O.I., Kennedy, B.W., 1991. Genetic and environmental trends for litter size in swine. J. Anim. Sci., 69(8):3177-3182.

[145]Stroband, H.W., van der Lende, T., 1990. Embryonic and uterine development during early pregnancy in pigs. J. Reprod. Fertil. Suppl., 40:261-277.

[146]Su, G., Lund, M.S., Sorensen, D., 2007. Selection for litter size at day five to improve litter size at weaning and piglet survival rate. J. Anim. Sci., 85(6):1385-1392.

[147]Thompson, B.K., Fraser, D., 1986. Variation in piglet weights: development of within litter variation over a 5-week lactation and effect of farrowing crate design. Can. J. Anim. Sci., 66(2):361-372.

[148]Tokach, M.D., Pettigrew, J.E., Dial, G.D., et al., 1992. Characterization of luteinizing-hormone secretion in the primiparous, lactating sow-relationship to blood metabolites and return-to-estrus interval. J. Anim. Sci., 70(7):2195-2201.

[149]Town, S.C., Putman, C.T., Turchinsky, N.J., et al., 2004. Number of conceptuses in utero affects porcine fetal muscle development. Reproduction, 128(4):443-454.

[150]van den Brand, H., Soede, N.M., Schrama, J.W., et al., 1998. Effects of dietary energy source on plasma glucose and insulin concentration in gilts. J. Anim. Physiol. An. N., 79(1-5):27-32.

[151]van den Brand, H., Dieleman, S.J., Soede, N.M., et al., 2000. Dietary energy source at two feeding levels during lactation of primiparous sows: I. Effects on glucose, insulin, and luteinizing hormone and on follicle development, weaning-to-estrus interval, and ovulation rate. J. Anim. Sci., 78(2):396-404.

[152]van den Brand, H., Soede, N.M., Kemp, B., 2006. Supplementation of dextrose to the diet during the weaning to estrus interval affects subsequent variation in within-litter piglet birth weight. Anim. Reprod. Sci., 91(3-4):353-358.

[153]van den Brand, H., van Enckevort, L.C.M., van der Hoeven, E.M., et al., 2009. Effects of dextrose plus lactose in the sows diet on subsequent reproductive performance and within litter birth weight variation. Reprod. Domest. Anim., 44(6):884-888.

[154]van der Lende, T., Dejager, D., 1991. Death risk and preweaning growth-rate of piglets in relation to the within-litter weight distribution at birth. Livest. Prod. Sci., 28(1):73-84.

[155]van der Lende, T., Hazeleger, W., Dejager, D., 1990. Weight distribution within litters at the early fetal stage and at birth in relation to embryonic mortality in the pig. Livest. Prod. Sci., 26(1):53-65.

[156]Vonnahme, K.A., Wilson, M.E., Foxcroft, G.R., et al., 2002. Impacts on conceptus survival in a commercial swine herd. J. Anim. Sci., 80(3):553-559.

[157]Waldorf, D.P., Foote, W.C., Sele, H.L., et al., 1957. Factory affecting fetal pig weight late in gestation. J. Anim. Sci., 4(16):976-985.

[158]Walzem, R.L., Dillard, C.J., German, J.B., 2002. Whey components: millennia of evolution create functionalities for mammalian nutrition: what we know and what we may be overlooking. Crit. Rev. Food Sci. Nutr., 42(4):353-375.

[159]Wang, J., Chen, L., Li, D., et al., 2008. Intrauterine growth restriction affects the proteomes of the small intestine, liver, and skeletal muscle in newborn pigs. J. Nutr., 138(1):60-66.

[160]Wang, T., Liu, C., Feng, C., et al., 2013. IUGR alters muscle fiber development and proteome in fetal pigs. Front. Biosci. (Landmark Ed.), 18(2):598-607.

[161]Wang, W.W., Wu, Z.L., Dai, Z.L., et al., 2013. Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids, 45(3):463-477.

[162]Wang, W.W., Wu, Z.L., Lin, G., et al., 2014. Glycine stimulates protein synthesis and inhibits oxidative stress in pig small-intestinal epithelial cells. J. Nutr., 144(10):1540-1548.

[163]Wang, X.Q., Frank, J.W., Xu, J., et al., 2014a. Functional role of arginine during the peri-implantation period of pregnancy. II. Consequences of loss of function of nitric oxide synthase NOS3 mRNA in ovine conceptus trophectoderm. Biol. Reprod., 91(3):59.

[164]Wang, X.Q., Lin, G., Liu, C., et al., 2014b. Temporal proteomic analysis reveals defects in small-intestinal development of porcine fetuses with intrauterine growth restriction. J. Nutr. Biochem., 25(7):785-795.

[165]Webel, S.K., Dziuk, P.J., 1974. Effect of stage of gestation and uterine space on prenatal survival in pig. J. Anim. Sci., 38(5):960-963.

[166]Wei, Y.Q., Zhao, X., Kariya, Y., et al., 1995. Inhibition of proliferation and induction of apoptosis by abrogation of heat-shock protein (HSP) 70 expression in tumor cells. Cancer Immunol. Immunother., 40(2):73-78.

[167]Whaley, S.L., Hedgpeth, V.S., Britt, J.H., 1997. Evidence that injection of vitamin A before mating may improve embryo survival in gilts fed normal or high-energy diets. J. Anim. Sci., 75(4):1071-1077.

[168]Whaley, S.L., Hedgpeth, V.S., Farin, C.E., et al., 2000. Influence of vitamin A injection before mating on oocyte development, follicular hormones, and ovulation in gilts fed high-energy diets. J. Anim. Sci., 78(6):1598-1607.

[169]Widdowson, E.M., 1971. Intrauterine growth retardation in pig. I. Organ size and cellular development at birth and after growth to maturity. Neonatology, 19(4-6):329-340.

[170]Wientjes, J.G.M., Soede, N.M., van der Peet-Schwering, C.M.C., et al., 2012. Piglet uniformity and mortality in large organic litters: effects of parity and pre-mating diet composition. Livest. Sci., 144(3):218-229.

[171]Wigmore, P., Stickland, N.C., 1983. Muscle development in large and small pig fetuses. J. Anat., 137(Pt 2):235-245.

[172]Wilson, M.E., Biensen, N.J., Youngs, C.R., et al., 1998. Development of Meishan and Yorkshire littermate conceptuses in either a Meishan or Yorkshire uterine environment to day 90 of gestation and to term. Biol. Reprod., 58(4):905-910.

[173]Winters, L.M., Cummings, J.N., Stewart, H.A., 1947. A study of factors affecting survival from birth to weaning and total weaning weight of the litter in swine. J. Anim. Sci., 6(3):288-296.

[174]Wise, T., Roberts, A.J., Christenson, R.K., 1997. Relationships of light and heavy fetuses to uterine position, placental weight, gestational age, and fetal cholesterol concentrations. J. Anim. Sci., 75(8):2197-2207.

[175]Wiseman, J., Varley, M.A., Chadwick, J.P., 1998. Progress in Pig Science. Nottingham University Press.

[176]Wolf, J., Zakova, E., Groeneveld, E., 2008. Within-litter variation of birth weight in hyperprolific Czech Large White sows and its relation to litter size traits, stillborn piglets and losses until weaning. Livest. Sci., 115(2-3):195-205.

[177]Wootton, R., Flecknell, P.A., Royston, J.P., et al., 1983. Intrauterine growth-retardation detected in several species by non-normal birth-weight distributions. J. Reprod. Fertil., 69(2):659-663.

[178]Wu, G., 2010. Functional amino acids in growth, reproduction and health. Adv. Nutr., 1(1):31-37.

[179]Wu, G., 2013. Functional amino acids in nutrition and health. Amino Acids, 45(3):407-411.

[180]Wu, G., 2014. Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J. Anim. Sci. Biotechnol., 5(1):34.

[181]Wu, G., Morris, S.M., 1998. Arginine metabolism: nitric oxide and beyond. Biochem. J., 336(1):1-17.

[182]Wu, G., Bazer, F.W., Tuo, W.B., et al., 1996. Unusual abundance of arginine and ornithine in porcine allantoic fluid. Biol. Reprod., 54(6):1261-1265.

[183]Wu, G., Bazer, F.W., Wallace, J.M., et al., 2006. Board-invited review: intrauterine growth retardation: implications for the animal sciences. J. Anim. Sci., 84(9):2316-2337.

[184]Wu, G., Bazer, F.W., Davis, T.A., et al., 2007. Important roles for the arginine family of amino acids in swine nutrition and production. Livest. Sci., 112(1-2):8-22.

[185]Wu, G., Bazer, F.W., Datta, S., et al., 2008. Proline metabolism in the conceptus: implications for fetal growth and development. Amino Acids, 35(4):691-702.

[186]Wu, G., Bazer, F.W., Davis, T.A., et al., 2009. Arginine metabolism and nutrition in growth, health and disease. Amino Acids, 37(1):153-168.

[187]Wu, G., Bazer, F.W., Burghardt, R.C., et al., 2010. Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production. J. Anim. Sci., 88(13 Suppl.):E195-E204.

[188]Wu, G., Bazer, F.W., Johnson, G.A., et al., 2011. Triennial Growth Symposium: important roles for L-glutamine in swine nutrition and production. J. Anim. Sci., 89(7):2017-2030.

[189]Wu, G., Wu, Z.L., Dai, Z.L., et al., 2013a. Dietary requirements of “nutritionally nonessential amino acids” by animals and humans. Amino Acids, 44(4):1107-1113.

[190]Wu, G., Bazer, F.W., Satterfield, M.C., et al., 2013b. Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids, 45(2):241-256.

[191]Wu, G., Bazer, F.W., Johnson, G.A., et al., 2013c. Maternal and fetal amino acid metabolism in gestating sows. Soc. Reprod. Fertil. Suppl., 68:185-198.

[192]Wu, G., Bazer, F.W., Dai, Z., et al., 2014. Amino acid nutrition in animals: protein synthesis and beyond. Annu. Rev. Anim. Biosci., 2(1):387-417.

[193]Wu, W.Z., Wang, X.Q., Wu, G.Y., et al., 2010. Differential composition of proteomes in sow colostrum and milk from anterior and posterior mammary glands. J. Anim. Sci., 88(8):2657-2664.

[194]Xie, S., Broermann, D.M., Nephew, K.P., et al., 1990. Ovulation and early embryogenesis in swine. Biol. Reprod., 43(2):236-240.

[195]Yang, H., Foxcroft, G.R., Pettigrew, J.E., et al., 2000. Impact of dietary lysine intake during lactation on follicular development and oocyte maturation after weaning in primiparous sows. J. Anim. Sci., 78(4):993-1000.

[196]Zak, L.J., Cosgrove, J.R., Aherne, F.X., et al., 1997. Pattern of feed intake and associated metabolic and endocrine changes differentially affect postweaning fertility in primiparous lactating sows. J. Anim. Sci., 75(1):208-216.

[197]Zheng, C., Huang, C., Cao, Y., et al., 2009. Branched-chain amino acids reverse the growth of intrauterine growth retardation rats in a malnutrition model. Asian Australas. J. Anim. Sci., 22(11):1495-1503.

[198]Zhong, X., Wang, T., Zhang, X., et al., 2010. Heat shock protein 70 is upregulated in the intestine of intrauterine growth retardation piglets. Cell Stress Chaperones, 15(3):335-342.

[199]Zhong, X., Li, W., Huang, X., et al., 2012. Impairment of cellular immunity is associated with overexpression of heat shock protein 70 in neonatal pigs with intrauterine growth retardation. Cell Stress Chaperones, 17(4):495-505.

[200]Ziecik, A.J., Kapelanski, W., Zaleska, M., et al., 2002. Effect of diet composition and frequency of feeding on postprandial insulin level and ovarian follicular development in prepubertal pigs. J. Anim. Feed Sci., 11(3):471-483.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE