CLC number: S963
On-line Access: 2017-10-05
Received: 2016-06-20
Revision Accepted: 2016-11-19
Crosschecked: 2017-09-13
Cited: 0
Clicked: 5233
Xin-zheng Nie, Sha Chen, Xiao-xu Zhang, Bin-yang Dai, Li-chun Qian. Effects of neutral phytase on growth performance and phosphorus utilization in crucian carp (Carassius auratus)[J]. Journal of Zhejiang University Science B, 2017, 18(10): 886-896.
@article{title="Effects of neutral phytase on growth performance and phosphorus utilization in crucian carp (Carassius auratus)",
author="Xin-zheng Nie, Sha Chen, Xiao-xu Zhang, Bin-yang Dai, Li-chun Qian",
journal="Journal of Zhejiang University Science B",
volume="18",
number="10",
pages="886-896",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600280"
}
%0 Journal Article
%T Effects of neutral phytase on growth performance and phosphorus utilization in crucian carp (Carassius auratus)
%A Xin-zheng Nie
%A Sha Chen
%A Xiao-xu Zhang
%A Bin-yang Dai
%A Li-chun Qian
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 10
%P 886-896
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600280
TY - JOUR
T1 - Effects of neutral phytase on growth performance and phosphorus utilization in crucian carp (Carassius auratus)
A1 - Xin-zheng Nie
A1 - Sha Chen
A1 - Xiao-xu Zhang
A1 - Bin-yang Dai
A1 - Li-chun Qian
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 10
SP - 886
EP - 896
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600280
Abstract: A feeding trial was conducted for nine weeks to investigate the effects of partially replacing Ca(H2PO4)2 with neutral phytase on the growth performance, phosphorus utilization, nutrient digestibility, serum biochemical parameters, bone and carcass mineral composition, and digestive-enzyme-specific activity in crucian carp (Carassius auratus). The diets prepared with 0.8%, 0%, and 1.8% Ca(H2PO4)2 (1%=1 g/100 g) supplements were regarded as the P1E0, negative control (NC), and positive control (PC) groups, respectively; the other three experimental diets were prepared with the addition of 200, 300, and 500 U/kg of neutral phytase, respectively, based on the P1E0 group. Three hundred and eighty-four fish ((1.50±0.01) g) were randomly distributed in the six treatments with four replicates each. The fish were initially fed with 2%–3% diets of their body weight per day, with feeding twice daily (08:00 and 16:00), under a 12-h light/12-h dark cycle at the temperature of (27.56±0.89) °C. The results showed that supplemental phytase at different levels in the diet improved the final body weight, average daily gain, feed conversion ratio, phosphorus utilization, and protein efficiency ratio of crucian carp (P<0.05). Phytase supplementation increased the mineral content in serum (P), bone (P, Ca), and carcass (P, Ca, Zn, Na, and Mg) (P<0.05); the trypsin and chymotrypsin activity soared when fed with the phytase-supplemented diets (P<0.05). We may conclude that supplemental dietary neutral phytase improved the growth performance, phosphorus utilization as well as nutrient utilization in crucian carp, and it can be considered an important nutritional replacement for Ca(H2PO4)2.
[1]AOAC, 2005. Official Methods of Analysis, 18th Ed. Association of Official Analytical Chemistry (AOAC), Washington, DC.
[2]Baruah, K., Sahu, N.P., Pal, A.K., et al., 2004. Dietary phytase: an ideal approach for a cost effective and low-polluting aquafeed. Naga, 27(3-4):15-19.
[3]Baruah, K., Pal, A.K., Sahu, N.P., et al., 2005. Dietary protein level, microbial phytase, citric acid and their interactions on bone mineralization of Labeo rohita (Hamilton) juveniles. Aquac. Res., 36(8):803-812.
[4]Cao, L., Wang, W.M., Yang, C.T., et al., 2007. Application of microbial phytase in fish feed. Enzyme Microbiol. Technol., 40(4):497-507.
[5]Cao, L., Yang, Y., Wang, W.M., et al., 2008. Effects of pretreatment with microbial phytase on phosphorous utilization and growth performance of Nile tilapia (Oreochromis niloticus). Aquacult. Nutr., 14(2):99-109.
[6]Cheng, Z.J., Hardy, R.W., 2002. Effect of microbial phytase on apparent nutrient digestibility of barley, canola meal, wheat and wheat middlings, measured in vivo using rainbow trout (Oncorhynchus mykiss). Aquacult. Nutr., 8(4):271-277.
[7]Cheng, Z.J., Hardy, R.W., 2003. Effects of extrusion and expelling processing, and microbial phytase supplementation on apparent digestibility coefficients of nutrients in full-fat soybeans for rainbow trout (Oncorhynchus mykiss). Aquaculture, 218(1-4):501-514.
[8]Debnath, D., Pal, A.K., Sahu, N.P., et al., 2005. Effect of dietary microbial phytase supplementation on growth and nutrient digestibility of Pangasius pangasius (Hamilton) fingerlings. Aquac. Res., 36(2):180-187.
[9]Gonzalez-Vega, J.C., Walk, C.L., Stein, H.H., 2015. Effect of phytate, microbial phytase, fiber, and soybean oil on calculated values for apparent and standardized total tract digestibility of calcium and apparent total tract digestibility of phosphorus in fish meal fed to growing pigs. J. Anim. Sci., 93(10):4808-4818.
[10]Hu, Y., Pan, L.Q., 2006. Effects of ten metal ions on digestive enzyme activities of Portunus trituberculatus. J. Trop. Oceanogr., 25(6):52-57 (in Chinese).
[11]Huang, H.Q., Shao, N., Wang, Y.R., et al., 2009. A novel beta-propeller phytase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive. Appl. Microbiol. Biotechnol., 83(2):249-259.
[12]Jackson, L.S., Li, M.H., Robinson, E.H., 1996. Use of microbial phytase in channel catfish Zctalurus punctatus diets to improve utilization of phytate phosphorus. J. World Aquacult. Soc., 27(3):309-313.
[13]Jiang, H., Kong, F.D., Liu, Z.F., 2016. Effects of temperature, pH and metal ion on the activity of digestive enzyme from Dalian mantis shrimp. Stor. Proc., 16(4):84-88 (in Chinese).
[14]Kumar, V., Makkar, H.P.S., Amselgruber, W., et al., 2010. Physiological, haematological and histopathological responses in common carp (Cyprinus carpio L.) fingerlings fed with differently detoxified Jatropha curcas kernel meal. Food Chem. Toxicol., 48(8-9):2063-2072.
[15]Lall, S.P., 2002. The mineral. In: Halver, J.E., Hardy, R.W. (Eds.), Fish Nutrition, 3rd Ed. Academic Press, San Diego, California, USA, p.259-308.
[16]Liebert, F., Portz, L., 2005. Nutrient utilization of Nile tilapia Oreochromis niloticus fed plant based low phosphorus diets supplemented with graded levels of different sources of microbial phytase. Aquaculture, 248(1-4):111-119.
[17]Liu, L.W., Su, J.M., Luo, Y.L., 2012. Effect of partial replacement of dietary monocalcium phosphate with neutral phytase on growth performance and phosphorus digestibility in gibel carp, Carassius auratus gibelio (Bloch). Aquac. Res., 43(9):1404-1413.
[18]Liu, L.W., Luo, Y.L., Liang, X.F., et al., 2013. Effects of neutral phytase supplementation on biochemical parameters in grass carp, Ctenopharyngodon idellus, and gibel carp, Carassius auratus gibelio, fed different levels of monocalcium phosphate. J. World Aquacult. Soc., 44(1):56-65.
[19]Liu, L.W., Zhou, Y., Wu, J.J., et al., 2014. Supplemental graded levels of neutral phytase using pretreatment and spraying methods in the diet of grass carp, Ctenopharyngodon idellus. Aquac. Res., 45(12):1932-1941.
[20]Lori, O., Thava, V., James, H.H., 2001. Phytic acid. Food Rev. Int., 17(4):419-431.
[21]Lowry, O.H., Rosenbrough, N.J., Farr, A.L., et al., 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193(1):265-275.
[22]Luo, L., Wu, X.F., Xue, M., et al., 2007. Effect of replacement calcium phosphate monobasic with neutral phytase on growth and phosphorous metabolism of Japanese sea bass (Lateolabrax Japonicus). Chin. J. Anim. Nutr., 19(1):33-39 (in Chinese).
[23]Ma, Y.F., Huang, Q.C., Lv, M.Y., et al., 2014. Chitosan-Zn chelate increases antioxidant enzyme activity and improves immune function in weaned piglets. Biol. Trace Elem. Res., 158(1):45-50.
[24]Niu, J.F., Wu, R.Q., Xie, J., et al., 2010. Effects of phytase on growth and digestive enzyme activities in largemouth bass Micropterus salmoides. J. Dalian Fish Univ., 25(2):132-136 (in Chinese).
[25]Qian, H., Komegy, E.T., Denbow, D.M., 1997. Utilization of phytate phosphorus and calcium as influenced by microbial phytase, cholecalciferol, and the calcium: total phosphorus ratio in broiler diets. Poult. Sci., 76(1):37-46.
[26]Robinson, E.H., Li, M.H., Manning, B.B., 2002. Comparison of microbial phytase and dicalcium phosphate for growth and bone mineralization of pond-raised channel catfish, Ictalurus punctatus. J. Appl. Aquacult., 12(3):81-88.
[27]Shao, Q.J., Ma, J.J., Xu, Z.R., et al., 2008. Dietary phosphorus requirement of juvenile black seabream, Sparus macrocephalus. Aquaculture, 277(1-2):92-100.
[28]Spinelli, J., Houle, C.R., Wekell, J.C., 1983. The effect of phytates on the growth of rainbow trout (Salmo gairdneri) fed purified diets containing varying quantities of calcium and magnesium. Aquaculture, 30(1-4):71-83.
[29]Tarkan, A.S., Almeida, D., Godard, M.J., et al., 2016. A review and meta-analysis of growth and life-history traits of a declining European freshwater fish, crucian carp Carassius carassius. Aquat. Conserv., 26(1):212-224.
[30]Vielma, J., Lall, S.P., Koskela, J., et al., 1998. Effects of dietary phytase and cholecalciferol on phosphorus bioavailability in rainbow trout (Oncorhynchus mykiss). Aquaculture, 163(3-4):309-323.
[31]Wang, C.Z., Wang, T., 2003. Feed Science. China Agriculture Press, Beijing, China, p.151-227 (in Chinese).
[32]Wang, F., Yang, Y.H., Han, Z.Z., et al., 2009. Effects of phytase pretreatment of soybean meal and phytase-sprayed in diets on growth, apparent digestibility coefficient and nutrient excretion of rainbow trout (Oncorhynchus mykiss Walbaum). Aquacult. Int., 17(2):143-157.
[33]Xu, S.D., Wang, S.Q., You, C.H., et al., 2014. Effects of replacing monocalcium phosphate with phytase on growth and phosphorus utilization in black sea bream, Acanthopagrus schlegelii. J. Fish Sci. Chin., 21(3):522-530 (in Chinese).
[34]Yoo, G.Y., Wang, X.J., Choi, S., et al., 2005. Dietary microbial phytase increased the phosphorus digestibility in juvenile Korean rockfish Sebastes schlegeli fed diets containing soybean meal. Aquaculture, 243(1-4):315-322.
[35]Zhang, P., Zhao, Z.L., Yang, Q.F., 2001. A review of nutrient requirements and nutritional physiology of Carassius auratus. Reservoir Fish., 21(3):9-11 (in Chinese).
[36]Zou, L.K., Wang, H.N., Pan, X., et al., 2008. Expression, purification and characterization of a phyAm-phyCs fusion phytase. J. Zhejiang Univ.-Sci. B, 9(7):536-545.
Open peer comments: Debate/Discuss/Question/Opinion
<1>