Full Text:   <3461>

Summary:  <1679>

CLC number: Q939.9

On-line Access: 2017-09-05

Received: 2016-08-19

Revision Accepted: 2016-10-31

Crosschecked: 2017-08-17

Cited: 0

Clicked: 5252

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jin-hui Yu

http://orcid.org/0000-0003-3594-7889

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.9 P.797-806

http://doi.org/10.1631/jzus.B1600367


Antioxidant activity of alcohol aqueous extracts of Crypthecodinium cohnii and Schizochytrium sp.


Author(s):  Jin-hui Yu, Yu Wang, Jie Sun, Fei Bian, Gao Chen, Yan Zhang, Yu-ping Bi, Ying-jie Wu

Affiliation(s):  Institute of Genome Engineered Animal Models for Human Disease, Dalian Medical University, Dalian 116044, China; more

Corresponding email(s):   yupingbi@vip.sina.com, yingjiewu@dmu.edu.cn

Key Words:  Crypthecodinium cohnii, Schizochytrium sp., Alcohol aqueous extract, Antioxidant activity, Total phenolics


Jin-hui Yu, Yu Wang, Jie Sun, Fei Bian, Gao Chen, Yan Zhang, Yu-ping Bi, Ying-jie Wu. Antioxidant activity of alcohol aqueous extracts of Crypthecodinium cohnii and Schizochytrium sp.[J]. Journal of Zhejiang University Science B, 2017, 18(9): 797-806.

@article{title="Antioxidant activity of alcohol aqueous extracts of Crypthecodinium cohnii and Schizochytrium sp.",
author="Jin-hui Yu, Yu Wang, Jie Sun, Fei Bian, Gao Chen, Yan Zhang, Yu-ping Bi, Ying-jie Wu",
journal="Journal of Zhejiang University Science B",
volume="18",
number="9",
pages="797-806",
year="2017",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1600367"
}

%0 Journal Article
%T Antioxidant activity of alcohol aqueous extracts of Crypthecodinium cohnii and Schizochytrium sp.
%A Jin-hui Yu
%A Yu Wang
%A Jie Sun
%A Fei Bian
%A Gao Chen
%A Yan Zhang
%A Yu-ping Bi
%A Ying-jie Wu
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 9
%P 797-806
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1600367

TY - JOUR
T1 - Antioxidant activity of alcohol aqueous extracts of Crypthecodinium cohnii and Schizochytrium sp.
A1 - Jin-hui Yu
A1 - Yu Wang
A1 - Jie Sun
A1 - Fei Bian
A1 - Gao Chen
A1 - Yan Zhang
A1 - Yu-ping Bi
A1 - Ying-jie Wu
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 9
SP - 797
EP - 806
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1600367


Abstract: 
Crypthecodinium cohnii (dinoflagellate) and Schizochytrium sp. (thraustochytrid) are the main sources for docosahexaenoic acid (DHA). The present study aimed to evaluate the antioxidant activity of petroleum ether, ethyl acetate, n-butanol, and water fractions of alcohol aqueous extracts of these two microalgae and to provide a theoretical basis for comprehensive utilization. The antioxidant activity was determined by total antioxidant capacity (TAC) determination, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, ferrous ion-chelating ability (FICA) assay, and reducing power (RP) assay. The total phenolic content (TPC) and total flavonoid content (TFC) were also measured by the Folin-Ciocalteu and spectrophotometry methods, respectively. The results indicated that the extracts from these two microalgae possessed good antioxidant capacity. Analysis showed that most antioxidant performance indicators (TAC, DPPH, and RP) were positively correlated with the TPC of the extracts, suggesting that the phenolics might be the major components in C. cohnii and Schizochytrium sp., contributing to their antioxidative function. Therefore, the polar fractions of C. cohnii and Schizochytrium sp. could be further examined and considered for application in health products or cosmetics.

隐甲藻和裂殖壶藻醇水提物不同极性萃取物的抗氧化活性研究

目的:评价隐甲藻和裂殖壶藻醇水提物的石油醚萃取相、乙酸乙酯萃取相、正丁醇萃取相和水相的抗氧化活性水平,为综合利用两种微藻提供理论依据。
创新点:隐甲藻和裂殖壶藻是二十二碳六烯酸(DHA)的重要原料,然而提取DHA后剩余的藻渣未得到充分利用。本文首次对两种微藻的极性提取物的不同极性部位进行抗氧化活性评价,并初步确定多酚类化合物是其发挥抗氧化作用的主要物质成分,为综合利用两种微藻提供了理论依据和参考。
方法:用70%乙醇浸提隐甲藻和裂殖壶藻藻粉,所得粗提物分别使用石油醚、乙酸乙酯、正丁醇和水依次萃取,得到不同极性组分萃取物。采用总抗氧化能力、2,2-二苯基-1-三硝基苯肼(DPPH)自由基清除能力、亚铁离子螯合能力及总还原力等方法对不同极性组分的萃取物进行抗氧化活性评价。采用Folin-Ciocalteu方法测定样品中总多酚含量,采用分光光度法测定样品中总黄酮含量。
结论:本实验结果显示,隐甲藻和裂殖壶藻醇水提物的不同极性组分具有较好的抗氧化作用(图2~5)。相关性分析结果表明萃取物中的多酚类化合物与其抗氧化水平显著相关(表2和表3),因此,我们推测多酚类化合物是两种微藻的主要抗氧化成分。综上所述,隐甲藻和裂殖壶藻具有综合开发利用潜力,可深入研究。

关键词:隐甲藻;裂殖壶藻;醇水提物;抗氧化;总多酚含量

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Alam, M.N., Bristi, N.J., Rafiquzzaman, M., 2013. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J., 21(2):143-152.

[2]Beam, C.A., Himes, M., 1982. Distribution of members of the Crypthecodinium cohnii (Dinophyceae) species complex. J. Eukaryot. Microbiol., 29(1):8-15.

[3]Carocho, M., Ferreira, I.C., 2013. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol., 51:15-25.

[4]Cheok, C.Y., Salman, H.A.K., Sulaiman, R., 2014. Extraction and quantification of saponins: a review. Food Res. Int., 59:16-40.

[5]Choochote, W., Suklampoo, L., Ochaikul, D., 2014. Evaluation of antioxidant capacities of green microalgae. J. Appl. Phycol., 26(1):43-48.

[6]Encarnação, T., Pais, A.A., Campos, M.G., et al., 2015. Cyanobacteria and microalgae: a renewable source of bioactive compounds and other chemicals. Sci. Prog., 98(2):145-168.

[7]Fedorova-Dahms, I., Marone, P.A., Bauter, M., et al., 2011. Safety evaluation of DHA-rich Algal Oil from Schizochytrium sp. Food Chem. Toxicol., 49(12):3310-3318.

[8]Fedorova-Dahms, I., Thorsrud, B.A., Bailey, E., et al., 2014. A 3-week dietary bioequivalence study in preweaning farm piglets of two sources of docosahexaenoic acid produced from two different organisms. Food Chem. Toxicol., 65: 43-51.

[9]Gaffney, M., O'Rourke, R., Murphy, R., 2014. Manipulation of fatty acid and antioxidant profiles of the microalgae Schizochytrium sp. through flaxseed oil supplementation. Algal Res., 6B:195-200.

[10]Ganuza, E., Benítez-Santana, T., Atalah, E., et al., 2008. Crypthecodinium cohnii and Schizochytrium sp. as potential substitutes to fisheries-derived oils from seabream (Sparus aurata) microdiets. Aquaculture, 277(1-2):109-116.

[11]Gong, Y., Liu, J., Jiang, M., et al., 2015. Improvement of omega-3 docosahexaenoic acid production by marine dinoflagellate Crypthecodinium cohnii using rapeseed meal hydrolysate and waste molasses as feedstock. PLoS ONE, 10(5):e0125368.

[12]Guo, D.S., Ji, X.J., Ren, L.J., et al., 2016. Development of a real-time bioprocess monitoring method for docosahexaenoic acid production by Schizochytrium sp. Bioresour. Technol., 216:422-427.

[13]Hajimahmoodi, M., Faramarzi, M.A., Mohammadi, N., et al., 2010. Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J. Appl. Phycol., 22(1):43-50.

[14]Hillig, F., Pilarek, M., Junne, S., et al., 2013. Cultivation of marine microorganisms in single-use systems. In: Eibl, D., Eibl, R. (Eds.), Disposable Bioreactors II. Advances in Biochemical Engineering/Biotechnology, Vol. 138. Springer, Berlin, Heidelberg, p.179-206.

[15]Kasala, E.R., Bodduluru, L.N., Barua, C.C., et al., 2016. Antioxidant and antitumor efficacy of Luteolin, a dietary flavone on benzo(a)pyrene-induced experimental lung carcinogenesis. Biomed. Pharmacother., 82:568-577.

[16]Khozin-Goldberg, I., Leu, S., Boussiba, S., 2016. Microalgae as a source for VLC-PUFA production. In: Nakamura, Y., Li-Beisson, Y. (Eds.), Lipids in Plant and Algae Development. Subcellular Biochemistry, Vol. 86. Springer, Cham, p.471-510.

[17]Lewis, K.D., Huang, W.F., Zhang, X.H., et al., 2016. Toxicological evaluation of arachidonic acid (ARA)-rich oil and docosahexaenoic acid (DHA)-rich oil. Food Chem. Toxicol., 96(25):133-144.

[18]Li, H.B., Cheng, K.W., Wong, C.C., et al., 2007. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem., 102(3):771-776.

[19]Li, M.H., Robinson, E.H., Tucke, C.S., et al., 2009. Effects of dried algae Schizochytrium sp., a rich source of docosahexaenoic acid, on growth, fatty acid composition, and sensory quality of channel catfish Ictalurus punctatus. Aquaculture, 292(3-4):232-236.

[20]Li, N., Shi, J., Wang, K., 2014. Profile and antioxidant activity of phenolic extracts from 10 crabapples (Malus wild species). J. Agric. Food Chem., 62(3):574-581.

[21]Ling, X., Guo, J., Liu, X., et al., 2015. Impact of carbon and nitrogen feeding strategy on high production of biomass and docosahexaenoic acid (DHA) by Schizochytrium sp. LU310. Bioresour. Technol., 184:139-147.

[22]Lippmeier, J.C., Crawford, K.S., Owen, C.B., et al., 2009. Characterization of both polyunsaturated fatty acid biosynthetic pathways in Schizochytrium sp. Lipids, 44(7):621-630.

[23]López-Alarcón, C., Denicola, A., 2013. Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays. Anal. Chim. Acta, 763:1-10.

[24]Luo, X., Su, P., Zhang, W., 2015. Advances in microalgae-derived phytosterols for functional food and pharmaceutical applications. Mar. Drugs, 13(7):4231-4254.

[25]Lv, J.W., Yang, X.Q., Li, L.H., 2014. Antioxidant activity and chemical constituents of microalgae oil of Schizochytrium aggregatum. Adv. Mater. Res., 919-921:2022-2029.

[26]Narwal, S., Thakur, V., Sheoran, S., et al., 2014. Antioxidant activity and phenolic content of the Indian wheat varieties. J. Plant Biochem. Biotechnol., 23(1):11-17.

[27]O'Brien, P., Carrasco-Pozo, C., Speisky, H., 2006. Boldine and its antioxidant or health-promoting properties. Chem.-Biol. Interact., 159(1):1-17.

[28]Pan, Y., Zhu, J., Wang, H., et al., 2007. Antioxidant activity of ethanolic extract of Cortex fraxini and use in peanut oil. Food Chem., 103(3):913-918.

[29]Pleissner, D., Eriksen, N.T., 2012. Effects of phosphorous, nitrogen, and carbon limitation on biomass composition in batch and continuous flow cultures of the heterotrophic dinoflagellate Crypthecodinium cohnii. Biotechnol. Bioeng., 109(8):2005-2016.

[30]Podsędek, A., 2007. Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. LWT-Food Sci. Technol., 40(1):1-11.

[31]Saeed, N., Khan, M.R., Shabbir, M., 2012. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement. Altern. Med., 12(1):221.

[32]Safafar, H., van Wagenen, J., Moller, P., et al., 2015. Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Mar. Drugs, 13(12):7339-7356.

[33]Salem, N.Jr., Eggersdorfer, M., 2015. Is the world supply of omega-3 fatty acids adequate for optimal human nutrition? Curr. Opin. Clin. Nutr. Metab. Care, 18(2):147-154.

[34]Samaranayaka, A.G., Li-Chan, E.C., 2011. Food-derived peptidic antioxidants: a review of their production, assessment, and potential applications. J. Funct. Foods, 3(4):229-254.

[35]Schiavone, A., Chiarini, R., Marzoni, M., et al., 2007. Breast meat traits of Muscovy ducks fed on a microalga (Crypthecodinium cohnii) meal supplemented diet. Brit. Poultry Sci., 48(5):573-579.

[36]Singh, P., Baranwal, M., Reddy, S.M., 2016. Antioxidant and cytotoxic activity of carotenes produced by Dunaliella salina under stress. Pharm. Biol., 54(10):2269-2275.

[37]Sugamura, K., Keaney, J.F.Jr., 2011. Reactive oxygen species in cardiovascular disease. Free Radic. Biol. Med., 51(5):978-992.

[38]Venuste, M., Zhang, X., Shoemaker, C.F., et al., 2013. Influence of enzymatic hydrolysis and enzyme type on the nutritional and antioxidant properties of pumpkin meal hydrolysates. Food Funct., 4(5):811-820.

[39]Wu, J.Q., Kosten, T.R., Zhang, X.Y., 2013. Free radicals, antioxidant defense systems, and schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 46(1):200-206.

[40]Wu, X., Wu, F., Tong, X., et al., 2013. Emergy-based sustainability assessment of an integrated production system of cattle, biogas, and greenhouse vegetables: insight into the comprehensive utilization of wastes on a large-scale farm in Northwest China. Ecol. Eng., 61(Part A):335-344.

[41]Ying, L., Kong, D., Gao, Y.Y., et al., 2017. In vitro antioxidant activity of phenolic-enriched extracts from Zhangping Narcissus tea cake and their inhibition on growth and metastatic capacity of 4T1 murine breast cancer cells. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), in press.

[42]Zeng, W.C., Zhang, Z., Jia, L.R., 2014. Antioxidant activity and characterization of antioxidant polysaccharides from pine needle (Cedrus deodara). Carbohydr. Polym., 108: 58-64.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Jin-hui Yu@a. Institute for Genomic Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, Liaoning, 116044, China; b. Shandong Center of Crop Germplasm Resources, Jinan, Shandong, 250100, China; d. College of Integrative Medicine, Dalian Med<faith_2002@163.com>

2016-11-14 11:16:42

Dear editor, I found some problems as followed:

(1) The affiliation of each author and corresponding authors were not labeled.
(2) yingjiewu@dlmedu.edu.cn should be changed to yingjiewu@dmu.edu.cn.

Thank you!

Jinhui Yu

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE