Full Text:   <1513>

Summary:  <1416>

CLC number: R541.4

On-line Access: 2017-08-08

Received: 2017-02-11

Revision Accepted: 2017-05-01

Crosschecked: 2017-07-19

Cited: 0

Clicked: 2921

Citations:  Bibtex RefMan EndNote GB/T7714


Dong-Yi Jin


Guo-Ping Shi


-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.8 P.685-695


Interleukin-18, matrix metalloproteinase-22 and -29 are independent risk factors of human coronary heart disease

Author(s):  Dong-Yi Jin, Cong-Lin Liu, Jun-Nan Tang, Zhao-Zhong Zhu, Xue-Xi Xuan, Xiao-Dan Zhu, Yun-Zhe Wang, Tian-Xia Zhang, De-Liang Shen, Xiao-Fang Wang, Guo-Ping Shi, Jin-Ying Zhang

Affiliation(s):  Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; more

Corresponding email(s):   gshi@bwh.harvard.edu, jyzhang@zzu.edu.cn

Key Words:  Interleukin-18, Matrix metalloproteinase (MMP)-22, MMP-29, Coronary heart disease, Risk factor

Dong-Yi Jin, Cong-Lin Liu, Jun-Nan Tang, Zhao-Zhong Zhu, Xue-Xi Xuan, Xiao-Dan Zhu, Yun-Zhe Wang, Tian-Xia Zhang, De-Liang Shen, Xiao-Fang Wang, Guo-Ping Shi, Jin-Ying Zhang. Interleukin-18, matrix metalloproteinase-22 and -29 are independent risk factors of human coronary heart disease[J]. Journal of Zhejiang University Science B, 2017, 18(8): 685-695.

@article{title="Interleukin-18, matrix metalloproteinase-22 and -29 are independent risk factors of human coronary heart disease",
author="Dong-Yi Jin, Cong-Lin Liu, Jun-Nan Tang, Zhao-Zhong Zhu, Xue-Xi Xuan, Xiao-Dan Zhu, Yun-Zhe Wang, Tian-Xia Zhang, De-Liang Shen, Xiao-Fang Wang, Guo-Ping Shi, Jin-Ying Zhang",
journal="Journal of Zhejiang University Science B",
publisher="Zhejiang University Press & Springer",

%0 Journal Article
%T Interleukin-18, matrix metalloproteinase-22 and -29 are independent risk factors of human coronary heart disease
%A Dong-Yi Jin
%A Cong-Lin Liu
%A Jun-Nan Tang
%A Zhao-Zhong Zhu
%A Xue-Xi Xuan
%A Xiao-Dan Zhu
%A Yun-Zhe Wang
%A Tian-Xia Zhang
%A De-Liang Shen
%A Xiao-Fang Wang
%A Guo-Ping Shi
%A Jin-Ying Zhang
%J Journal of Zhejiang University SCIENCE B
%V 18
%N 8
%P 685-695
%@ 1673-1581
%D 2017
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1700073

T1 - Interleukin-18, matrix metalloproteinase-22 and -29 are independent risk factors of human coronary heart disease
A1 - Dong-Yi Jin
A1 - Cong-Lin Liu
A1 - Jun-Nan Tang
A1 - Zhao-Zhong Zhu
A1 - Xue-Xi Xuan
A1 - Xiao-Dan Zhu
A1 - Yun-Zhe Wang
A1 - Tian-Xia Zhang
A1 - De-Liang Shen
A1 - Xiao-Fang Wang
A1 - Guo-Ping Shi
A1 - Jin-Ying Zhang
J0 - Journal of Zhejiang University Science B
VL - 18
IS - 8
SP - 685
EP - 695
%@ 1673-1581
Y1 - 2017
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1700073

Background: coronary heart disease (CHD) is characterized by arterial wall inflammation and matrix degradation. matrix metalloproteinase (MMP)-22 and -29 and pro-inflammatory cytokine interleukin-18 (IL18) are present in human hearts. IL18 may regulate MMP-22 and -29 expression, which may correlate with CHD progression. Methods and results: Immunoblot analysis showed that IL18 induced MMP-22 expression in human aortic smooth muscle cells. The Mann Whitney test from a prospective study of 194 CHD patients and 68 non-CHD controls demonstrated higher plasma levels of IL18, MMP-22 and -29 in CHD patients than in the controls. A logistic regression test suggested that plasma IL18 (odds ratio (OR)=1.131, P=0.007), MMP-22 (OR=1.213, P=0.040), and MMP-29 (OR=1.198, P=0.033) were independent risk factors of CHD. Pearson’s correlation test showed that IL18 (coefficient (r)=0.214, P=0.045; r=0.246, P=0.031) and MMP-22 (r=0.273, P=0.006; r=0.286, P=0.012) were associated with the Gensini score before and after adjusting for potential confounding factors. The multivariate Pearson’s correlation test showed that plasma MMP-22 levels correlated positively with high-sensitive-C-reactive protein (hs-CRP) (r=0.167, P=0.023), and MMP-29 levels correlated negatively with triglyceride (r=−0.169, P=0.018). Spearman’s correlation test indicated that plasma IL18 levels associated positively with plasma MMP-22 (r=0.845, P<0.001) and MMP-29 (r=0.548, P<0.001). Conclusions: Our observations suggest that IL18, MMP-22 and -29 serve as biomarkers and independent risk factors of CHD. Increased systemic IL18 in CHD patients may contribute to elevated plasma MMP-22 and -29 levels in these patients.


方法:通过免疫印迹分析检测IL18对人体动脉平滑肌细胞MMP-22的表达;通过Mann Whitney检验对来自于194例冠心病患者和68例对照组的前瞻性研究进行分析;通过logistic回归分析冠心病的独立风险因素;通过Pearson相关性分析IL18和MMP-22的表达水平与冠状动脉Gensini积分的相关性;通过多变量Pearson相关性分析血浆MMP-22水平与超敏C反应蛋白(hs-CRP)及甘油三酯水平的相关性;通过Spearman相关性分析血浆IL18水平与MMP-22和MMP-29的相关性。


Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article


[1]Abraham, M., Shapiro, S., Lahat, N., et al., 2002. The role of IL-18 and IL-12 in the modulation of matrix metalloproteinases and their tissue inhibitors in monocytic cells. Int. Immunol., 14(12):1449-1457.

[2]Anderson, J.L., Adams, C.D., Antman, E.M., et al., 2013. 2012 ACCF/AHA focused update incorporated into the ACCF/ AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol., 61(23):e179-e347.

[3]Arbab-Zadeh, A., Fuster, V., 2015. The myth of the “vulnerable plaque”: transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J. Am. Coll. Cardiol., 65(8):846-855.

[4]Blankenberg, S., Tiret, L., Bickel, C., et al., 2002. Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation, 106(1):24-30.

[5]Blankenberg, S., Luc, G., Ducimetiere, P., et al., 2003. Interleukin-18 and the risk of coronary heart disease in European men: the prospective epidemiological study of myocardial infarction (PRIME). Circulation, 108(20):2453-2459.

[6]Chalikias, G.K., Tziakas, D.N., Kaski, J.C., et al., 2005. Interleukin-18:interleukin-10 ratio and in-hospital adverse events in patients with acute coronary syndrome. Atherosclerosis, 182(1):135-143.

[7]Cheng, C., Tempel, D., van Haperen, R., et al., 2006. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation, 113(23):2744-2753.

[8]Creemers, E.E., Cleutjens, J.P., Smits, J.F., et al., 2001. Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ. Res., 89(3):201-210.

[9]Elhage, R., Jawien, J., Rudling, M., et al., 2003. Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc. Res., 59(1):234-240.

[10]Evans, J., Collins, M., Jennings, C., et al., 2007. The association of interleukin-18 genotype and serum levels with metabolic risk factors for cardiovascular disease. Eur. J. Endocrinol., 157(5):633-640.

[11]Finn, A.V., Nakano, M., Narula, J., et al., 2010. Concept of vulnerable/unstable plaque. Arterioscler. Thromb. Vasc. Biol., 30(7):1282-1292.

[12]Gensini, G.G., 1983. A more meaningful scoring system for determining the severity of coronary heart disease. Am. J. Cardiol., 51(3):606.

[13]Gerdes, N., Sukhova, G.K., Libby, P., et al., 2002. Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for atherogenesis. J. Exp. Med., 195(2):245-257.

[14]Goncalves, I., Bengtsson, E., Colhoun, H.M., et al., 2015. Elevated plasma levels of MMP-12 are associated with atherosclerotic burden and symptomatic cardiovascular disease in subjects with type 2 diabetes. Arterioscler. Thromb. Vasc. Biol., 35(7):1723-1731.

[15]Gururajan, R., Grenet, J., Lahti, J.M., et al., 1998. Isolation and characterization of two novel metalloproteinase genes linked to the Cdc2L locus on human chromosome 1p36.3. Genomics, 52(1):101-106.

[16]Hansson, G.K., 2005. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med., 352(16):1685-1695.

[17]Herman, M.P., Sukhova, G.K., Libby, P., et al., 2001. Expression of neutrophil collagenase (matrix metalloproteinase-8) in human atheroma: a novel collagenolytic pathway suggested by transcriptional profiling. Circulation, 104(16):1899-1904.

[18]Hu, J.H., Touch, P., Zhang, J., et al., 2015. Reduction of mouse atherosclerosis by urokinase inhibition or with a limited-spectrum matrix metalloproteinase inhibitor. Cardiovasc. Res., 105(3):372-382.

[19]Ishida, Y., Migita, K., Izumi, Y., et al., 2004. The role of IL-18 in the modulation of matrix metalloproteinases and migration of human natural killer (NK) cells. FEBS Lett., 569(1-3):156-160.

[20]Jefferis, B.J., Papacosta, O., Owen, C.G., et al., 2011. Interleukin 18 and coronary heart disease: prospective study and systematic review. Atherosclerosis, 217(1):227-233.

[21]Jefferis, B.J., Whincup, P.H., Welsh, P., et al., 2013. Prospective study of IL-18 and risk of MI and stroke in men and women aged 60–79 years: a nested case-control study. Cytokine, 61(2):513-520.

[22]Johnson, J.L., Devel, L., Czarny, B., et al., 2011. A selective matrix metalloproteinase-12 inhibitor retards atherosclerotic plaque development in apolipoprotein E-knockout mice. Arterioscler. Thromb. Vasc. Biol., 31(3):528-535.

[23]Katsuda, S., Kaji, T., 2003. Atherosclerosis and extracellular matrix. J. Atheroscler. Thromb., 10(5):267-274.

[24]Kuzuya, M., Nakamura, K., Sasaki, T., et al., 2006. Effect of MMP-2 deficiency on atherosclerotic lesion formation in apoE-deficient mice. Arterioscler. Thromb. Vasc. Biol., 26(5):1120-1125.

[25]Lehrke, M., Greif, M., Broedl, U.C., et al., 2009. MMP-1 serum levels predict coronary atherosclerosis in humans. Cardiovasc. Diabetol., 8:50.

[26]Libby, P., Ridker, P.M., Hansson, G.K., et al., 2009. Inflammation in atherosclerosis: from pathophysiology to practice. J. Am. Coll. Cardiol., 54(23):2129-2138.

[27]Loftus, I.M., Naylor, A.R., Bell, P.R., et al., 2001. Plasma MMP-9—a marker of carotid plaque instability. Eur. J. Vasc. Endovasc. Surg., 21(1):17-21.

[28]Luttun, A., Lutgens, E., Manderveld, A., et al., 2004. Loss of matrix metalloproteinase-9 or matrix metalloproteinase-12 protects apolipoprotein E-deficient mice against atherosclerotic media destruction but differentially affects plaque growth. Circulation, 109(11):1408-1414.

[29]Ma, Y., Yabluchanskiy, A., Hall, M.E., et al., 2014. Using plasma matrix metalloproteinase-9 and monocyte chemoattractant protein-1 to predict future cardiovascular events in subjects with carotid atherosclerosis. Atherosclerosis, 232(1):231-233.

[30]Mallat, Z., Corbaz, A., Scoazec, A., et al., 2001. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation, 104(14):1598-1603.

[31]Mallat, Z., Heymes, C., Corbaz, A., et al., 2004. Evidence for altered interleukin (IL)-18 pathway in human heart failure. FASEB J., 18(14):1752-1754.

[32]Newby, A.C., 2005. Dual role of matrix metalloproteinases (matrixins) in in timal thickening and atherosclerotic plaque rupture. Physiol. Rev., 85(1):1-31.

[33]Nilsson, L., Jonasson, L., Nijm, J., et al., 2006. Increased plasma concentration of matrix metalloproteinase-7 in patients with coronary artery disease. Clin. Chem., 52(8):1522-1527.

[34]Pagidipati, N.J., Gaziano, T.A., 2013. Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation, 127(6):749-756.

[35]Quiding-Jarbrink, M., Smith, D.A., Bancroft, G.J., 2001. Production of matrix metalloproteinases in response to mycobacterial infection. Infect. Immun., 69(9):5661-5670.

[36]Reddy, V.S., Prabhu, S.D., Mummidi, S., et al., 2010. Interleukin-18 induces EMMPRIN expression in primary cardiomyocytes via JNK/Sp1 signaling and MMP-9 in part via EMMPRIN and through AP-1 and NF-κB activation. Am. J. Physiol. Heart Circ. Physiol., 299(4):H1242-H1254.

[37]Ross, R., 1999. Atherosclerosis—an inflammatory disease. N. Engl. J. Med., 340(2):115-126.

[38]Siasos, G., Tousoulis, D., Kioufis, S., et al., 2012. Inflammatory mechanisms in atherosclerosis: the impact of matrix metalloproteinases. Curr. Top Med. Chem., 12(10):1132-1148.

[39]Task Force, M., Montalescot, G., Sechtem, U., et al., 2013. 2013 ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur. Heart J., 34(38):2949-3003.

[40]Tenger, C., Sundborger, A., Jawien, J., et al., 2005. IL-18 accelerates atherosclerosis accompanied by elevation of IFN-γ and CXCL16 expression independently of T cells. Arterioscler. Thromb. Vasc. Biol., 25(4):791-796.

[41]Thygesen, K., Alpert, J.S., Jaffe, A.S., et al., 2012. Third universal definition of myocardial infarction. J. Am. Coll. Cardiol., 60(16):1581-1598.

[42]Wang, J., Sun, C., Gerdes, N., et al., 2015. Interleukin 18 function in atherosclerosis is mediated by the interleukin 18 receptor and the Na-Cl co-transporter. Nat. Med., 21(7):820-826.

[43]Wu, S., Chen, J., Feder, J., et al., 2007. Metalloprotease Highly Expressed in the Testis, MMP-29. US Patent 7285633.

Open peer comments: Debate/Discuss/Question/Opinion


Please provide your name, email address and a comment

Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2022 Journal of Zhejiang University-SCIENCE