
CLC number:
On-line Access: 2025-12-31
Received: 2024-08-08
Revision Accepted: 2024-11-19
Crosschecked: 2025-12-31
Cited: 0
Clicked: 1752
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0003-3661-8593
Zuping WU, Qiaoli DAI, Ying WANG, Na WU, Chenyu WANG, Jiejun SHI. Emerging roles of the metabolite succinate in bone-related diseases[J]. Journal of Zhejiang University Science B, 2025, 26(12): 1137-1155.
@article{title="Emerging roles of the metabolite succinate in bone-related diseases",
author="Zuping WU, Qiaoli DAI, Ying WANG, Na WU, Chenyu WANG, Jiejun SHI",
journal="Journal of Zhejiang University Science B",
volume="26",
number="12",
pages="1137-1155",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2400406"
}
%0 Journal Article
%T Emerging roles of the metabolite succinate in bone-related diseases
%A Zuping WU
%A Qiaoli DAI
%A Ying WANG
%A Na WU
%A Chenyu WANG
%A Jiejun SHI
%J Journal of Zhejiang University SCIENCE B
%V 26
%N 12
%P 1137-1155
%@ 1673-1581
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2400406
TY - JOUR
T1 - Emerging roles of the metabolite succinate in bone-related diseases
A1 - Zuping WU
A1 - Qiaoli DAI
A1 - Ying WANG
A1 - Na WU
A1 - Chenyu WANG
A1 - Jiejun SHI
J0 - Journal of Zhejiang University Science B
VL - 26
IS - 12
SP - 1137
EP - 1155
%@ 1673-1581
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2400406
Abstract: Bone-related diseases, including osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), fracture, and periodontitis, significantly impact human health. succinate, primarily known as a metabolic intermediate in the tricarboxylic acid (TCA) cycle, has emerged as a regulator of cellular functions beyond its metabolic role. Under stress, succinate accumulates in mitochondria and acts as a signaling molecule, modulating cellular processes. Notably, succinate activates angiogenesis and inflammation by stabilizing hypoxia-inducible factor-1α (HIF-1α). Moreover, it influences various pathophysiological processes by interacting with the succinate receptor 1 (SUCNR1), thereby impacting immune response, inflammation, cancer metastasis, and bone homeostasis. The multifaceted roles of succinate as a signaling molecule vary depending on its cellular location and concentration. Recent metabolomic analyses have revealed elevated succinate levels in bone-related diseases, indicating its potential association with these conditions. The objective of this review is to elucidate the impacts of succinate on different bone-related diseases and to discuss potential therapeutic targets and drug molecules based on its mechanisms of action.
[1]AbdelmoezAM, DmytriyevaO, ZurkeYX, et al., 2023. Cell selectivity in succinate receptor SUCNR1/GPR91 signaling in skeletal muscle. Am J Physiol Endocrinol Metab, 324(4):E289-E298.
[2]AganiFH, PichiuleP, ChavezJC, et al., 2000. The role of mitochondria in the regulation of hypoxia-inducible factor 1 expression during hypoxia. J Biol Chem, 275(46):35863-35867.
[3]ArizaAC, DeenPMT, RobbenJH, 2012. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions. Front Endocrinol (Lausanne), 3:22.
[4]BardellaC, PollardPJ, TomlinsonI, 2011. SDH mutations in cancer. Biochim Biophys Acta, 1807(11):1432-1443.
[5]BhuniyaD, UmraniD, DaveB, et al., 2011. Discovery of a potent and selective small molecule hGPR91 antagonist. Bioorg Med Chem Lett, 21(12):3596-3602.
[6]BinieckaM, CanavanM, McgarryT, et al., 2016. Dysregulated bioenergetics: a key regulator of joint inflammation. Ann Rheum Dis, 75(12):2192-2200.
[7]CaiWJ, ZhangJL, YuYQ, et al., 2023. Mitochondrial transfer regulates cell fate through metabolic remodeling in osteoporosis. Adv Sci (Weinh), 10(4):2204871.
[8]CallawayDA, JiangJX, 2015. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab, 33(4):359-370.
[9]CaoH, ZhouXC, XuBW, et al., 2024. Advances in the study of mitophagy in osteoarthritis, J Zhejiang Univ-Sci B (Biomed & Biotechnol), 25(3):197-211.
[10]ChouchaniET, PellVR, GaudeE, et al., 2014. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 515(7527):431-435.
[11]ConnorsJ, DaweN, van LimbergenJ, 2019. The role of succinate in the regulation of intestinal inflammation. Nutrients, 11(1):25.
[12]Dalla PozzaE, DandoI, PacchianaR, et al., 2020. Regulation of succinate dehydrogenase and role of succinate in cancer. Semin Cell Dev Biol, 98:4-14.
[13]de VadderF, MithieuxG, 2018. Gut-brain signaling in energy homeostasis: the unexpected role of microbiota-derived succinate. J Endocrinol, 236(2):R105-R108.
[14]DeeringJ, LinDSY, D'EliaA, et al., 2022. Fabrication of succinate-alginate xerogel films for in vitro coupling of osteogenesis and neovascularization. Biomater Adv, 141:213122.
[15]DengDW, PanC, WuZM, et al., 2021. An integrated metabolomic study of osteoporosis: discovery and quantification of hyocholic acids as candidate markers. Front Pharmacol, 12:725341.
[16]FarahH, YoungSP, MauroC, et al., 2021. Metabolic dysfunction and inflammatory disease: the role of stromal fibroblasts. FEBS J, 288(19):5555-5568.
[17]FarahH, WijesingheSN, NicholsonT, et al., 2022. Differential metabotypes in synovial fibroblasts and synovial fluid in hip osteoarthritis patients support inflammatory responses. Int J Mol Sci, 23(6):3266.
[18]FaustovLA, Nedel'koNA, MorozovaMV, 2001. Pathomorphology of regenerative processes in mandibular fracture after sodium succinate treatment and laser magnetotherapy in an experimental setting. Stomatologiia (Mosk), 80(6):8-11.
[19]Fernández-VeledoS, VendrellJ, 2019. Gut microbiota-derived succinate: friend or foe in human metabolic diseases? Rev Endocr Metab Disord, 20(4):439-447.
[20]GaoB, DengRX, ChaiY, et al., 2019. Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration. J Clin Invest, 129(6):2578-2594.
[21]GaoYD, ZhaoYQ, HuangJF, 2014. Metabolic modeling of common Escherichia coli strains in human gut microbiome. Biomed Res Int, 2014:694967.
[22]García-PratL, Sousa-VictorP, Muñoz-CánovesP, 2017. Proteostatic and metabolic control of stemness. Cell Stem Cell, 20(5):593-608.
[23]GilissenJ, JouretF, PirotteB, et al., 2016. Insight into SUCNR1 (GPR91) structure and function. Pharmacol Ther, 159:56-65.
[24]GuoYQ, XieCZ, LiXY, et al., 2017. Succinate and its G-protein-coupled receptor stimulates osteoclastogenesis. Nat Commun, 8:15621.
[25]GuoYQ, ChoSW, SaxenaD, et al., 2020. Multifaceted actions of succinate as a signaling transmitter vary with its cellular locations. Endocrinol Metab (Seoul), 35(1):36-43.
[26]GuoYQ, XuFX, ThomasSC, et al., 2022. Targeting the succinate receptor effectively inhibits periodontitis. Cell Rep, 40(12):111389.
[27]GuoYS, ChiXP, WangYF, et al., 2020. Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing. Stem Cell Res Ther, 11:245.
[28]HakakY, Lehmann-BruinsmaK, PhillipsS, et al., 2009. The role of the GPR91 ligand succinate in hematopoiesis. J Leukoc Biol, 85(5):837-843.
[29]HeWH, MiaoFJP, LinDCH, et al., 2004. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature, 429(6988):188-193.
[30]HögbergC, GidlöfO, TanC, et al., 2011. Succinate independently stimulates full platelet activation via cAMP and phosphoinositide 3-kinase-β signaling. J Thromb Haemost, 9(2):361-372.
[31]HohlC, OestreichR, RösenP, et al., 1987. Evidence for succinate production by reduction of fumarate during hypoxia in isolated adult rat heart cells. Arch Biochem Biophys, 259(2):527-535.
[32]HuZP, LiY, ZhangLL, et al., 2024. Metabolic changes in fibroblast-like synoviocytes in rheumatoid arthritis: state of the art review. Front Immunol, 15:1250884.
[33]HuangZS, HeZR, KongY, et al., 2020. Insight into osteoarthritis through integrative analysis of metabolomics and transcriptomics. Clin Chim Acta, 510:323-329.
[34]JiangS, YanW, 2017. Succinate in the cancer–immune cycle. Cancer Lett, 390:45-47.
[35]JinWJ, JinYL, DuanPQ, et al., 2022. Promotion of collagen mineralization and dentin repair by succinates. J Mater Chem B, 10(30):5826-5834.
[36]JonesSW, BrockbankSMV, ClementsKM, et al., 2009. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) modulates key biological pathways associated with OA disease pathology. Osteoarthritis Cartilage, 17(1):124-131.
[37]KaufholdM, SchulzK, BreljakD, et al., 2011. Differential interaction of dicarboxylates with human sodium-dicarboxylate cotransporter 3 and organic anion transporters 1 and 3. Am J Physiol Renal Physiol, 301(5):F1026-F1034.
[38]KeiranN, Ceperuelo-MallafréV, CalvoE, et al., 2019. SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity. Nat Immunol, 20(5):581-592.
[39]KimS, HwangJ, XuanJH, et al., 2014. Global metabolite profiling of synovial fluid for the specific diagnosis of rheumatoid arthritis from other inflammatory arthritis. PLoS ONE, 9(6):e97501.
[40]KinLX, ButlerCA, SlakeskiN, et al., 2020. Metabolic cooperativity between Porphyromonas gingivalis and Treponema denticola. J Oral Microbiol, 12(1):1808750.
[41]KoSH, ChoiGE, OhJY, et al., 2017. Succinate promotes stem cell migration through the GPR91-dependent regulation of DRP1-mediated mitochondrial fission. Sci Rep, 7:12582.
[42]LeeKT, LiaoHS, HsiehMH, 2023. Glutamine metabolism, sensing and signaling in plants. Plant Cell Physiol, 64(12):1466-1481.
[43]LiX, 2023. Succinate signaling in periodontitis induced neuroinflammation and dementia. NIH Reporter. https://reporter.nih.gov/search/hotde1ECj0OjAdcKqrjimA/projects/map/project-details/11247610
[44]LiY, ZhengJY, LiuJQ, et al., 2016. Succinate/NLRP3 inflammasome induces synovial fibroblast activation: therapeutical effects of clematichinenoside AR on arthritis. Front Immunol, 7:532.
[45]LiY, LiuY, WangC, et al., 2018. Succinate induces synovial angiogenesis in rheumatoid arthritis through metabolic remodeling and HIF-1α/VEGF axis. Free Radic Biol Med, 126:1-14.
[46]LiaoZQ, HanX, WangYH, et al., 2023. Differential metabolites in osteoarthritis: a systematic review and meta-analysis. Nutrients, 15(19):4191.
[47]Littlewood-EvansA, SarretS, ApfelV, et al., 2016. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J Exp Med, 213(9):1655-1662.
[48]LiuJL, GaoZH, LiuXJ, 2024. Mitochondrial dysfunction and therapeutic perspectives in osteoporosis. Front Endocrinol (Lausanne), 15:1325317.
[49]LöfflerJ, NoomA, EllinghausA, et al., 2023. A comprehensive molecular profiling approach reveals metabolic alterations that steer bone tissue regeneration. Commun Biol, 6:327.
[50]LuR, MengH, GaoX, et al., 2014. Effect of non-surgical periodontal treatment on short chain fatty acid levels in gingival crevicular fluid of patients with generalized aggressive periodontitis. J Periodontal Res, 49(5):574-583.
[51]LuRF, FengXH, XuL, et al., 2015. Clinical and putative periodontal pathogens’ features of different sites with probing depth reduction after non-surgical periodontal treatment of patients with aggressive periodontitis. J Peking Univ (Health Sci), 47(1):13-18 (in Chinese).
[52]MaevskyEI, PeskovAB, UchitelML, et al., 2008. A succinate-based composition reverses menopausal symptoms without sex hormone replacement therapy. Adv Gerontol, 21(2):298-305.
[53]MaoHM, YangAD, ZhaoYH, et al., 2020. Succinate supplement elicited “pseudohypoxia” condition to promote proliferation, migration, and osteogenesis of periodontal ligament cells. Stem Cells Int, 2020:2016809.
[54]MuXM, ZhaoT, XuC, et al., 2017. Oncometabolite succinate promotes angiogenesis by upregulating VEGF expression through GPR91-mediated STAT3 and ERK activation. Oncotarget, 8(8):13174-13185.
[55]MurphyMP, O'NeillLAJ, 2018. Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers. Cell, 174(4):780-784.
[56]NahirAM, VitisN, SilbermannM, 1990. Cellular enzymatic activities in the articular cartilage of osteoarthritic and osteoporotic hip joints of humans: a quantitative cytochemical study. Aging (Milano), 2(4):363-369.
[57]NairS, SobotkaKS, JoshiP, et al., 2019. Lipopolysaccharide-induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia, 67(6):1047-1061.
[58]NanusDE, WijesingheSN, PearsonMJ, et al., 2020. Regulation of the inflammatory synovial fibroblast phenotype by metastasis-associated lung adenocarcinoma transcript 1 long noncoding RNA in obese patients with osteoarthritis. Arthritis Rheumatol, 72(4):609-619.
[59]NguyenG, ParkSY, DoDV, et al., 2022. Gemigliptin alleviates succinate-induced hepatic stellate cell activation by ameliorating mitochondrial dysfunction. Endocrinol Metab (Seoul), 37(6):918-928.
[60]OhwakiK, 1988. High carboxylic acid level in the gingival crevicular fluid (GCF) of the patients with advanced periodontal disease. Nihon Shishubyo Gakkai Kaishi, 30(4):985-995.
[61]OseiYD, ChurchichJE, 1995. Screening and sequence determination of a cDNA-encoding the human brain 4-aminobutyrate aminotransferase. Gene, 155(2):185-187.
[62]PajorAM, 2014. Sodium-coupled dicarboxylate and citrate transporters from the SLC13 family. Pflugers Arch, 466(1):119-130.
[63]PalmieriF, 2013. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med, 34(2-3):465-484.
[64]ParkJ, ChenY, TishkoffDX, et al., 2013. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell, 50(6):919-930.
[65]PellVR, ChouchaniET, FrezzaC, et al., 2016. Succinate metabolism: a new therapeutic target for myocardial reperfusion injury. Cardiovasc Res, 111(2):134-141.
[66]PellerinL, MagistrettiPJ, 1994. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA, 91(22):10625-10629.
[67]PengB, LiH, PengXX, 2015. Functional metabolomics: from biomarker discovery to metabolome reprogramming. Protein Cell, 6(9):628-637.
[68]Peruzzotti-JamettiL, BernstockJD, VicarioN, et al., 2018. Macrophage-derived extracellular succinate licenses neural stem cells to suppress chronic neuroinflammation. Cell Stem Cell, 22(3):355-368.e13.
[69]PolleselloP, de BernardB, GrandolfoM, et al., 1991. Energy state of chondrocytes assessed by 31P-NMR studies of preosseous cartilage. Biochem Biophys Res Commun, 180(1):216-222.
[70]PragHA, GruszczykAV, HuangMM, et al., 2021. Mechanism of succinate efflux upon reperfusion of the ischaemic heart. Cardiovasc Res, 117(4):1188-1201.
[71]ReddyA, BoziLHM, YaghiOK, et al., 2020. pH-gated succinate secretion regulates muscle remodeling in response to exercise. Cell, 183(1):62-75.e17.
[72]RubicT, LametschwandtnerG, JostS, et al., 2008. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat Immunol, 9(11):1261-1269.
[73]Rubić-SchneiderT, Carballido-PerrigN, RegairazC, et al., 2017. GPR91 deficiency exacerbates allergic contact dermatitis while reducing arthritic disease in mice. Allergy, 72(3):444-452.
[74]SadagopanN, LiWL, RoberdsSL, et al., 2007. Circulating succinate is elevated in rodent models of hypertension and metabolic disease. Am J Hypertens, 20(11):1209-1215.
[75]SchlessingerA, SunNN, ColasC, et al., 2014. Determinants of substrate and cation transport in the human Na+/dicarboxylate cotransporter NaDC3. J Biol Chem, 289(24):16998-17008.
[76]Schmidt-BleekK, SchellH, LienauJ, et al., 2014. Initial immune reaction and angiogenesis in bone healing. J Tissue Eng Regen Med, 8(2):120-130.
[77]SelakMA, ArmourSM, MackenzieED, et al., 2005. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell, 7(1):77-85.
[78]ShahHN, WilliamsRAD, 1987. Catabolism of aspartate and asparagine by Bacteroides intermedius and Bacteroides gingivalis. Current Microbiol, 15(6):313-318.
[79]ShenJ, WangCC, LiDF, et al., 2017. DNA methyltransferase 3b regulates articular cartilage homeostasis by altering metabolism. JCI Insight, 2(12):e93612.
[80]ShenJ, WangCC, YingJ, et al., 2019. Inhibition of 4-aminobutyrate aminotransferase protects against injury-induced osteoarthritis in mice. JCI Insight, 4(18):e128568.
[81]SuH, LouY, FuY, et al., 2017. Involvement of the vitamin D receptor in energy metabolism revealed by profiling of lysine succinylome of white adipose tissue. Sci Rep, 7:14132.
[82]SuWQ, ShiJH, ZhaoYH, et al., 2020. Porphyromonas gingivalis triggers inflammatory responses in periodontal ligament cells by succinate-succinate dehydrogenase-HIF-1α axis. Biochem Biophys Res Commun, 522(1):184-190.
[83]SzekaneczZ, BesenyeiT, SzentpéteryÁ, et al., 2010. Angiogenesis and vasculogenesis in rheumatoid arthritis. Curr Opin Rheumatol, 22(3):299-306.
[84]TakahashiN, YamadaT, 2000. Glucose metabolism by Prevotella intermedia and Prevotella nigrescens. Oral Microbiol Immunol, 15(3):188-195.
[85]TakahashiN, SatoT, YamadaT, 2000. Metabolic pathways for cytotoxic end product formation from glutamate- and aspartate-containing peptides by Porphyromonas gingivalis. J Bacteriol, 182(17):4704-4710.
[86]TannahillGM, CurtisAM, AdamikJ, et al., 2013. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 496(7444):238-242.
[87]ThomasSC, GuoYQ, XuFX, et al., 2024. A novel SUCNR1 inhibitor alleviates dysbiosis through inhibition of host responses without direct interaction with host microbiota. Mol Oral Microbiol, 39(2):80-90.
[88]TomaI, KangJJ, SiposA, et al., 2008. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J Clin Invest, 118(7):2526-2534.
[89]TomitsukaE, KitaK, EsumiH, 2010. The NADH-fumarate reductase system, a novel mitochondrial energy metabolism, is a new target for anticancer therapy in tumor microenvironments. Ann N Y Acad Sci, 1201(1):44-49.
[90]UhlénM, FagerbergL, HallströmBM, et al., 2015. Proteomics. Tissue-based map of the human proteome. Science, 347(6220):1260419.
[91]Valls-LacalleL, BarbaI, Miró-CasasE, et al., 2016. Succinate dehydrogenase inhibition with malonate during reperfusion reduces infarct size by preventing mitochondrial permeability transition. Cardiovasc Res, 109(3):374-384.
[92]van DiepenJA, RobbenJH, HooiveldGJ, et al., 2017. SUCNR1-mediated chemotaxis of macrophages aggravates obesity-induced inflammation and diabetes. Diabetologia, 60(7):1304-1313.
[93]van PevenagePM, BirchmierJT, JuneRK, 2023. Utilizing metabolomics to identify potential biomarkers and perturbed metabolic pathways in osteoarthritis: a systematic review. Semin Arthritis Rheum, 59:152163.
[94]WangT, XuYQ, YuanYX, et al., 2019. Succinate induces skeletal muscle fiber remodeling via SUNCR1 signaling. EMBO Rep, 20(9):e47892.
[95]WangYH, HanX, ShiJR, et al., 2023. Distinct metabolites in osteopenia and osteoporosis: a systematic review and meta-analysis. Nutrients, 15(23):4895.
[96]WeiTJ, HuH, XuF, 2019. Effect of succinic acid on osteogenic differentiation of mouse MC3T3-E1 osteogenic precursor cells. Mil Med Joint Logist, 33(10):669-672, 703 (in Chinese).
[97]WenHT, GrisD, LeiY, et al., 2011. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol, 12(5):408-415.
[98]WentzelJF, LewiesA, BronkhorstAJ, et al., 2017. Exposure to high levels of fumarate and succinate leads to apoptotic cytotoxicity and altered global DNA methylation profiles in vitro. Biochimie, 135:28-34.
[99]WuKK, 2023. Extracellular succinate: a physiological messenger and a pathological trigger. Int J Mol Sci, 24(13):11165.
[100]WuWH, ZhaoSM, 2013. Metabolic changes in cancer: beyond the Warburg effect. Acta Biochim Biophys Sin (Shanghai), 45(1):18-26.
[101]XieN, TanZ, BanerjeeS, et al., 2015. Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am J Respir Crit Care Med, 192(12):1462-1474.
[102]YinXN, WangJ, CuiLF, et al., 2018. Enhanced glycolysis in the process of renal fibrosis aggravated the development of chronic kidney disease. Eur Rev Med Pharmacol Sci, 22(13):4243-4251.
[103]YuLS, QiHH, AnGH, et al., 2019. Association between metabolic profiles in urine and bone mineral density of pre- and postmenopausal Chinese women. Menopause, 26(1):94-102.
[104]ZengR, FanXY, YangJ, et al., 2023. SDH mutations, as potential predictor of chemotherapy prognosis in small cell lung cancer patients. Discov Oncol, 14:89.
[105]ZhangL, CaoYY, GuoXX, et al., 2023. Hypoxia-induced ROS aggravate tumor progression through HIF-1α-SERPINE1 signaling in glioblastoma, J Zhejiang Univ-Sci B (Biomed & Biotechnol), 24(1):32-49.
[106]ZhangWH, LangR, 2023. Succinate metabolism: a promising therapeutic target for inflammation, ischemia/reperfusion injury and cancer. Front Cell Dev Biol, 11:1266973.
[107]ZhaoQ, ShenH, SuKJ, et al., 2018. Metabolomic profiles associated with bone mineral density in US Caucasian women. Nutr Metab (Lond), 15:57.
[108]ZhunussovaA, SenB, FriedmanL, et al., 2015. Tumor microenvironment promotes dicarboxylic acid carrier-mediated transport of succinate to fuel prostate cancer mitochondria. Am J Cancer Res, 5(5):1665-1679.
Open peer comments: Debate/Discuss/Question/Opinion
<1>