CLC number:
On-line Access: 2025-08-25
Received: 2025-01-12
Revision Accepted: 2025-07-07
Crosschecked: 2025-08-25
Cited: 0
Clicked: 702
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0009-0009-1880-8511
https://orcid.org/0000-0003-0357-1434
https://orcid.org/0000-0003-0904-220X
Suya ZHENG, Ye CHEN, Zhipeng ZHU, Nan LI, Chunyu HE, H. Phillip KOEFFLER, Xin HAN, Qichun WEI, Liang XU. Exploiting targeted degradation of cyclins and cyclin-dependent kinases for cancer therapeutics: a review[J]. Journal of Zhejiang University Science B, 2025, 26(8): 713-739.
@article{title="Exploiting targeted degradation of cyclins and cyclin-dependent kinases for cancer therapeutics: a review",
author="Suya ZHENG, Ye CHEN, Zhipeng ZHU, Nan LI, Chunyu HE, H. Phillip KOEFFLER, Xin HAN, Qichun WEI, Liang XU",
journal="Journal of Zhejiang University Science B",
volume="26",
number="8",
pages="713-739",
year="2025",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2500021"
}
%0 Journal Article
%T Exploiting targeted degradation of cyclins and cyclin-dependent kinases for cancer therapeutics: a review
%A Suya ZHENG
%A Ye CHEN
%A Zhipeng ZHU
%A Nan LI
%A Chunyu HE
%A H. Phillip KOEFFLER
%A Xin HAN
%A Qichun WEI
%A Liang XU
%J Journal of Zhejiang University SCIENCE B
%V 26
%N 8
%P 713-739
%@ 1673-1581
%D 2025
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2500021
TY - JOUR
T1 - Exploiting targeted degradation of cyclins and cyclin-dependent kinases for cancer therapeutics: a review
A1 - Suya ZHENG
A1 - Ye CHEN
A1 - Zhipeng ZHU
A1 - Nan LI
A1 - Chunyu HE
A1 - H. Phillip KOEFFLER
A1 - Xin HAN
A1 - Qichun WEI
A1 - Liang XU
J0 - Journal of Zhejiang University Science B
VL - 26
IS - 8
SP - 713
EP - 739
%@ 1673-1581
Y1 - 2025
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2500021
Abstract: Cancer is characterized by abnormal cell proliferation. cyclins and cyclin-dependent kinases (CDKs) have been recognized as essential regulators of the intricate cell cycle, orchestrating DNA replication and transcription, RNA splicing, and protein synthesis. Dysregulation of the CDK pathway is prevalent in the development and progression of human cancers, rendering cyclins and CDKs attractive therapeutic targets. Several CDK4/6 inhibitors have demonstrated promising anti-cancer efficacy and have been successfully translated into clinical use, fueling the development of CDK-targeted therapies. With this enthusiasm for finding novel CDK-targeting anti-cancer agents, there have also been exciting advances in the field of targeted protein degradation through innovative strategies, such as using proteolysis-targeting chimera, heat shock protein 90 (HSP90)-mediated targeting chimera, hydrophobic tag-based protein degradation, and molecular glue. With a focus on the translational potential of cyclin- and CDK-targeting strategies in cancer, this review presents the fundamental roles of cyclins and CDKs in cancer. Furthermore, it summarizes current strategies for the proteasome-dependent targeted degradation of cyclins and CDKs, detailing the underlying mechanisms of action for each approach. A comprehensive overview of the structure and activity of existing CDK degraders is also provided. By examining the structure‒activity relationships, target profiles, and biological effects of reported cyclin/CDK degraders, this review provides a valuable reference for both CDK pathway-targeted biomedical research and cancer therapeutics.
[1]AdhikariB, BozilovicJ, DieboldM, et al., 2020. PROTAC-mediated degradation reveals a non-catalytic function of AURORA-A kinase. Nat Chem Biol, 16(11):1179-1188.
[2]AndersonNA, CryanJ, AhmedA, et al., 2020. Selective CDK6 degradation mediated by cereblon, VHL, and novel IAP-recruiting PROTACs. Bioorg Med Chem Lett, 30(9):127106.
[3]AoMT, WuJ, CaoY, et al., 2023. The synthesis of PROTAC molecule and new target KAT6A identification of CDK9 inhibitor iCDK9. Chin Chem Lett, 34(4):107741.
[4]AsgharU, WitkiewiczAK, TurnerNC, et al., 2015. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Revi Drug Discov, 14(2):130-146.
[5]AubletteMC, HarrisonTA, ThorpeEJ, et al., 2022. Selective Wee1 degradation by PROTAC degraders recruiting VHL and CRBN E3 ubiquitin ligases. Bioorg Med Chem Lett, 64:128636.
[6]BaiX, GuoZQ, ZhangYP, et al., 2023. CDK4/6 inhibition triggers ICAM1-driven immune response and sensitizes LKB1 mutant lung cancer to immunotherapy. Nat Commun, 14:1247.
[7]BaumliS, LolliG, LoweED, et al., 2008. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. EMBO J, 27(13):1907-1918.
[8]BékésM, LangleyDR, CrewsCM, 2022. PROTAC targeted protein degraders: the past is prologue. Nate Rev Drug Discov, 21(3):181-200.
[9]BöskenCA, FarnungL, HintermairC, et al., 2014. The structure and substrate specificity of human Cdk12/Cyclin K. Nat Commun, 5:3505.
[10]BoyerLA, LeeTI, ColeMF, et al., 2005. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122(6):947-956.
[11]BrandM, JiangBS, BauerS, et al., 2019. Homolog-selective degradation as a strategy to probe the function of CDK6 in AML. Cell Chem Biol, 26(2):300-306.e9.
[12]Cancer Genome Atlas Research Network, 2011. Integrated genomic analyses of ovarian carcinoma. Nature, 474(7353):609-615.
[13]ChenMQ, LiJ, ZhangL, et al., 2023. CDK8 and CDK19: positive regulators of signal-induced transcription and negative regulators of Mediator complex proteins. Nucleic Acids Res, 51(14):7288-7313.
[14]ChengL, ZhouSC, ZhouSQ, et al., 2022. Dual inhibition of CDK12/CDK13 targets both tumor and immune cells in ovarian cancer. Cancer Res, 82(19):3588-3602.
[15]ChiJ, LiHC, ZhouZ, et al., 2019. A novel strategy to block mitotic progression for targeted therapy. eBioMedicine, 49:40-54.
[16]ChipumuroE, MarcoE, ChristensenCL, et al., 2014. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell, 159(5):1126-1139.
[17]ChirnomasD, HornbergerKR, CrewsCM, 2023. Protein degraders enter the clinic—a new approach to cancer therapy. Nat Rev Clin Oncol, 20(4):265-278.
[18]ChoiSH, KimS, JonesKA, 2020. Gene expression regulation by CDK12: a versatile kinase in cancer with functions beyond CTD phosphorylation. Exp Mol Med, 52(5):762-771.
[19]ChouCL, LinCT, KaoCT, et al., 2024. A novel rational PROTACs design and validation via AI-driven drug design approach. ACS Omega, 9(37):38371-38384.
[20]ChouJ, QuigleyDA, RobinsonTM, et al., 2020. Transcription-associated cyclin-dependent kinases as targets and biomarkers for cancer therapy. Cancer Discov, 10(3):351-370.
[21]ChristensenCL, KwiatkowskiN, AbrahamBJ, et al., 2014. Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer Cell, 26(6):909-922.
[22]CondorelliR, SpringL, O’ShaughnessyJ, et al., 2018. Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients with metastatic breast cancer. Ann Oncol, 29(3):640-645.
[23]CornwellJA, CrncecA, AfifiMM, et al., 2023. Loss of CDK4/6 activity in S/G2 phase leads to cell cycle reversal. Nature, 619(7969):363-370.
[24]de DominiciM, PorazziP, XiaoYC, et al., 2020. Selective inhibition of Ph-positive ALL cell growth through kinase-dependent and -independent effects by CDK6-specific PROTACs. Blood, 135(18):1560-1573.
[25]DeshaiesRJ, 2015. Prime time for PROTACs. Nat Chem Biol, 11(9):634-635.
[26]DieciG, 2021. Removing quote marks from the RNA polymerase II CTD ‘code’. Biosystems, 207:104468.
[27]DieterSM, SieglC, CodóPL, et al., 2021. Degradation of CCNK/CDK12 is a druggable vulnerability of colorectal cancer. Cell Rep, 36(3):109394.
[28]DoganS, ShenRL, AngDC, et al., 2012. Molecular epidemiology of EGFR and KRAS mutations in 3026 lung adenocarcinomas: higher susceptibility of women to smoking-related KRAS-mutant cancers. Clin Cancer Res, 18(22):6169-6177.
[29]DonovanKA, FergusonFM, BushmanJW, et al., 2020. Mapping the degradable kinome provides a resource for expedited degrader development. Cell, 183(6):1714-1731.e10.
[30]DubburySJ, BoutzPL, SharpPA, 2018. CDK12 regulates DNA repair genes by suppressing intronic polyadenylation. Nature, 564(7734):141-145.
[31]FanHM, LiuWC, ZengYQ, et al., 2023. DNA damage induced by CDK4 and CDK6 blockade triggers anti-tumor immune responses through cGAS-STING pathway. Commun Biol, 6:1041.
[32]FanZ, DevlinJR, HoggSJ, et al., 2020. CDK13 cooperates with CDK12 to control global RNA polymerase II processivity. Sci Adv, 6(18):eaaz5041.
[33]FilippakopoulosP, PicaudS, MangosM, et al., 2012. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell, 149(1):214-231.
[34]GanXL, WangF, LuoJG, et al., 2024. Proteolysis Targeting Chimeras (PROTACs) based on celastrol induce multiple protein degradation for triple-negative breast cancer treatment. Eur J Pharm Sci, 192:106624.
[35]Glover-CutterK, LarochelleS, EricksonB, et al., 2009. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol Cell Biol, 29(20):5455-5464.
[36]GoelS, DeCristoMJ, WattAC, et al., 2017. CDK4/6 inhibition triggers anti-tumour immunity. Nature, 548(7668):471-475.
[37]GoelS, BergholzJS, ZhaoJJ, 2022. Targeting CDK4 and CDK6 in cancer. Nat Rev Cancer, 22(6):356-372.
[38]GordonV, BhadelS, WunderlichW, et al., 2010. CDK9 regulates AR promoter selectivity and cell growth through serine 81 phosphorylation. Mol Endocrinol, 24(12):2267-2280.
[39]HatcherJM, WangES, JohannessenL, et al., 2018. Development of highly potent and selective steroidal inhibitors and degraders of CDK8. ACS Med Chem Lett, 9(6):540-545.
[40]HatiS, ZallocchiM, HazlittR, et al., 2021. AZD5438-PROTAC: a selective CDK2 degrader that protects against cisplatin- and noise-induced hearing loss. Eur J Med Chem, 226:113849.
[41]HeH, ZhangXS, WangJ, et al., 2024. Development of degraders of cyclin-dependent kinases 4 and 6 based on rational drug design. J Med Chem, 67(13):11354-11364.
[42]HoulesT, BoucherJ, LavoieG, et al., 2023. The CDK12 inhibitor SR-4835 functions as a molecular glue that promotes cyclin K degradation in melanoma. Cell Death Discov, 9:459.
[43]HuAJ, LiW, PathakA, et al., 2023. CDK6 is essential for mesenchymal stem cell proliferation and adipocyte differentiation. Front Mol Biosci, 10:1146047.
[44]HuC, ShenLJ, ZouFM, et al., 2023. Predicting and overcoming resistance to CDK9 inhibitors for cancer therapy. Acta Pharm Sin B, 13(9):3694-3707.
[45]HuangHT, DobrovolskyD, PaulkJ, et al., 2018. A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader. Cell Chem Biol, 25(1):88-99.e6.
[46]HuangXD, DixitVM, 2016. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res, 26(4):484-498.
[47]HuangYG, LiuWW, ZhaoCH, et al., 2024. Targeting cyclin-dependent kinases: from pocket specificity to drug selectivity. Eur J Med Chem, 275:116547.
[48]HydbringP, MalumbresM, SicinskiP, 2016. Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases. Nat Rev Mol Cell Biol, 17(5):280-292.
[49]IniguezAB, StolteB, WangEJ, et al., 2018. EWS/FLI confers tumor cell synthetic lethality to CDK12 inhibition in Ewing sarcoma. Cancer Cell, 33(2):202-216.e6.
[50]IshidaT, CiulliA, 2021. E3 ligase ligands for PROTACs: how they were found and how to discover new ones. SLAS Discov, 26(4):484-502.
[51]JiWZ, DuGY, JiangJ, et al., 2024. Discovery of bivalent small molecule degraders of cyclin-dependent kinase 7 (CDK7). Eur J Med Chem, 276:116613.
[52]JiangBS, WangES, DonovanKA, et al., 2019. Development of dual and selective degraders of cyclin-dependent kinases 4 and 6. Angew Chem Int Ed, 58(19):6321-6326.
[53]KargboRB, 2021. Tumor-targeted bivalent protein degradation for application in cancer therapy. ACS Med Chem Lett, 12(3):326-327.
[54]KciukM, GielecińskaA, MujwarS, et al., 2022. Cyclin-dependent kinases in DNA damage response. Biochim Biophys Acta Rev Cancer, 1877(3):188716.
[55]KingHM, RanaS, KubicaSP, et al., 2021. Aminopyrazole based CDK9 PROTAC sensitizes pancreatic cancer cells to venetoclax. Bioorg Med Chem Lett, 43:128061.
[56]KozickaZ, SuchytaDJ, FochtV, et al., 2024. Design principles for cyclin K molecular glue degraders. Nat Chem Biol, 20(1):93-102.
[57]KrajewskaM, DriesR, GrassettiAV, et al., 2019. CDK12 loss in cancer cells affects DNA damage response genes through premature cleavage and polyadenylation. Nat Commun, 10:1757.
[58]KumarasamyV, GaoZ, ZhaoBS, et al., 2023. PROTAC-mediated CDK degradation differentially impacts cancer cell cycles due to heterogeneity in kinase dependencies. Br J Cancer, 129(8):1238-1250.
[59]LeiserD, PochonB, Blank-LissW, et al., 2014. Targeting of the MET receptor tyrosine kinase by small molecule inhibitors leads to MET accumulation by impairing the receptor downregulation. FEBS Lett, 588(5):653-658.
[60]LiFL, HuQY, ZhangXL, et al., 2022. DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs. Nat Commun, 13:7133.
[61]LiJC, LiuT, SongYL, et al., 2022. Discovery of small-molecule degraders of the CDK9-cyclin T1 complex for targeting transcriptional addiction in prostate cancer. J Med Chem, 65(16):11034-11057.
[62]LiQ, JiangBS, GuoJY, et al., 2022. INK4 tumor suppressor proteins mediate resistance to CDK4/6 kinase inhibitors. Cancer Discov, 12(2):356-371.
[63]LiZ, WangFC, TianXX, et al., 2021. HCK maintains the self-renewal of leukaemia stem cells via CDK6 in AML. J Exp Clin Cancer Res, 40:210.
[64]LiZZ, MaSY, ZhangL, et al., 2023. Targeted protein degradation induced by HEMTACs based on HSP90. J Med Chem, 66(1):733-751.
[65]LinRK, YangJ, LiuT, et al., 2023. Discovery of HyT-based degraders of CDK9-cyclin T1 complex. Chem Biodivers, 20(8):e202300769.
[66]LiuF, WangX, DuanJL, et al., 2022. A temporal PROTAC cocktail-mediated sequential degradation of AURKA abrogates acute myeloid leukemia stem cells. Adv Sci, 9(22):e2104823.
[67]LiuY, YangJW, WangTL, et al., 2023. Expanding PROTACtable genome universe of E3 ligases. Nat Commun, 1:6509.
[68]LuG, MiddletonRE, SunHH, et al., 2014. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science, 343(6168):305-309.
[69]LuoYL, SongDY, ZhangCW, et al., 2025. ProLinker–generator: design of a PROTAC linker base on a generation model using transfer and reinforcement learning. Appl Sci, 15(10):5616.
[70]LvL, ChenPH, CaoLZ, et al., 2020. Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger cyclin K degradation. eLife, 9:e59994.
[71]MagnusonB, BediK, NarayananIV, et al., 2022. CDK12 re
[72]gulates co-transcriptional splicing and RNA turnover in human cells. iScience, 25(9):105030.
[73]MarineauJJ, HammanKB, HuSH, et al., 2022. Discovery of SY-5609: a selective, noncovalent inhibitor of CDK7. J Med Chem, 65(2):1458-1480.
[74]MaurerB, BrandstoetterT, KollmannS, et al., 2021. Inducible deletion of CDK4 and CDK6 – deciphering CDK4/6 inhibitor effects in the hematopoietic system. Haematologica, 106(10):2624-2632.
[75]Mayor-RuizC, BauerS, BrandM, et al., 2020. Rational discovery of molecular glue degraders via scalable chemical profiling. Nat Chem Biol, 16(11):1199-1207.
[76]MbonyeUR, GokulranganG, DattM, et al., 2013. Phosphorylation of CDK9 at Ser175 enhances HIV transcription and is a marker of activated P-TEFb in CD4+ T lymphocytes. PLoS Pathogens, 9(5):e1003338.
[77]McKenneyC, LendnerY, Guerrero ZunigaA, et al., 2024. CDK4/6 activity is required during G2 arrest to prevent stress-induced endoreplication. Science, 384(6695):eadi2421.
[78]MenzlI, ZhangTH, Berger-BecvarA, et al., 2019. A kinase-independent role for CDK8 in BCR-ABL1+ leukemia. Nat Commun, 10:4741.
[79]MoonS, LeeBH, 2018. Chemically induced cellular proteolysis: an emerging therapeutic strategy for undruggable targets. Mol Cells, 41(11):933-942.
[80]MorrisonL, LoiblS, TurnerNC, 2024. The CDK4/6 inhibitor revolution – a game-changing era for breast cancer treatment. Nat Rev Clin Oncol, 21(2):89-105.
[81]NayyarN, deSauvage MA, ChuprinJ, et al., 2024. CDK4/6 inhibition sensitizes intracranial tumors to PD-1 blockade in preclinical models of brain metastasis. Clin Cancer Res, 30(2):420-435.
[82]NeklesaTK, TaeHS, SchneeklothAR, et al., 2011. Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins. Nat Chem Biol, 7(8):538-543.
[83]NiuT, LiKL, JiangL, et al., 2022. Noncovalent CDK12/13 dual inhibitors-based PROTACs degrade CDK12-Cyclin K complex and induce synthetic lethality with PARP inhibitor. Eur J Med Chem, 228:114012.
[84]OlsonCM, JiangBS, ErbMA, et al., 2018. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat Chem Biol, 14(2):163-170.
[85]PalmerCL, BorasB, PascualB, et al., 2025. CDK4 selective inhibition improves preclinical anti-tumor efficacy and safety. Cancer Cell, 43(3):464-481.e14.
[86]ParuaPK, FisherRP, 2020. Dissecting the Pol II transcription cycle and derailing cancer with CDK inhibitors. Nat Chem Biol, 16(7):716-724.
[87]PetroniG, FormentiSC, Chen-KiangS, et al., 2020. Immunomodulation by anticancer cell cycle inhibitors. Nat Rev Immunol, 20(11):669-679.
[88]PlutaAJ, StudniarekC, MurphyS, et al., 2024. Cyclin-dependent kinases: masters of the eukaryotic universe. WIREs RNA, 15(1):e1816.
[89]PuCL, LiuYY, DengR, et al., 2023. Development of PROTAC degrader probe of CDK4/6 based on DCAF16. Bioorg Chem, 138:106637.
[90]QiuM, YinZN, WangHH, et al., 2023. CDK12 and Integrator-PP2A complex modulates LEO1 phosphorylation for processive transcription elongation. Sci Adv, 9(20):eadf8698.
[91]QiuXQ, LiYQ, YuB, et al., 2021. Discovery of selective CDK9 degraders with enhancing antiproliferative activity through PROTAC conversion. Eur J Med Chem, 211:113091.
[92]QuandtE, RibeiroMPC, ClotetJ, 2020. Atypical cyclins: the extended family portrait. Cell Mol Life Sci, 77(2):231-242.
[93]QuandtE, MasipN, Hernández-OrtegaS, et al., 2023. CDK6 is activated by the atypical cyclin I to promote E2F-mediated gene expression and cancer cell proliferation. Mol Oncol, 17(7):1228-1245.
[94]QueredaV, BayleS, VenaF, et al., 2019. Therapeutic targeting of CDK12/CDK13 in triple-negative breast cancer. Cancer Cell, 36(5):545-558.e7.
[95]RanaS, BendjennatM, KourS, et al., 2019. Selective degradation of CDK6 by a palbociclib based PROTAC. Bioorg Med Chem Lett, 29(11):1375-1379.
[96]ŘezníčkováE, KrajčovičováS, PeřinaM, et al., 2022. Modulation of FLT3-ITD and CDK9 in acute myeloid leukaemia cells by novel proteolysis targeting chimera (PROTAC). Eur J Med Chem, 243:114792.
[97]RichingKM, SchwinnMK, VastaJD, et al., 2021. CDK family PROTAC profiling reveals distinct kinetic responses and cell cycle-dependent degradation of CDK2. SLAS Discov, 26(4):560-569.
[98]RishfiM, KrolsS, MartensF, et al., 2023. Targeted AURKA degradation: towards new therapeutic agents for neuroblastoma. Eur J Med Chem, 247:115033.
[99]RobbCM, ContrerasJI, KourS, et al., 2017. Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Chem Commun, 53(54):7577-7580.
[100]RusanM, LiK, LiY, et al., 2018. Suppression of adaptive responses to targeted cancer therapy by transcriptional repression. Cancer Discov, 8(1):59-73.
[101]SakamotoKM, KimKB, KumagaiA, et al., 2001. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA, 98(15):8554-8559.
[102]SandaT, LawtonLN, BarrasaMI, et al., 2012. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell, 22(2):209-221.
[103]SatyanarayanaA, KaldisP, 2009. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene, 28(33):2925-2939.
[104]SchachterMM, FisherRP, 2013. The CDK-activating kinase Cdk7: taking yes for an answer. Cell Cycle, 12(20):3239-3240.
[105]SchaerDA, BeckmannRP, DempseyJA, et al., 2018. The CDK4/6 inhibitor abemaciclib induces a T cell inflamed tumor microenvironment and enhances the efficacy of PD-L1 checkpoint blockade. Cell Rep, 22(11):2978-2994.
[106]ScheicherR, Hoelbl-KovacicA, BelluttiF, et al., 2015. CDK6 as a key regulator of hematopoietic and leukemic stem cell activation. Blood, 125(1):90-101.
[107]SchweizerMT, HaG, GulatiR, et al., 2020. CDK12-mutated prostate cancer: clinical outcomes with standard therapies and immune checkpoint blockade. JCO Precis Oncol, 4:382-392.
[108]ScirocchiF, ScagnoliS, BotticelliA, et al., 2022. Immune effects of CDK4/6 inhibitors in patients with HR+/HER2- metastatic breast cancer: relief from immunosuppression is associated with clinical response. eBioMedicine, 79:104010.
[109]SłabickiM, KozickaZ, PetzoldG, et al., 2020. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature, 585(7824):293-297.
[110]SteinebachC, NgYLD, SosičI, et al., 2020. Systematic exploration of different E3 ubiquitin ligases: an approach towards potent and selective CDK6 degraders. Chem Sci, 11(13):3474-3486.
[111]SuS, YangZM, GaoHY, et al., 2019. Potent and preferential degradation of CDK6 via proteolysis targeting chimera degraders. J Med Chem, 62(16):7575-7582.
[112]SunY, XueYL, SunPK, et al., 2023. Discovery of the first potent, selective, and in vivo efficacious polo-like kinase 4 proteolysis targeting chimera degrader for the treatment of TRIM37-amplified breast cancer. J Med Chem, 66(12):8200-8221.
[113]TangRF, WangZ, XiangST, et al., 2023. Uncovering the kinetic characteristics and degradation preference of PROTAC systems with advanced theoretical analyses. JACS Au, 3(6):1775-1789.
[114]TengMX, JiangJ, HeZX, et al., 2020. Development of CDK2 and CDK5 dual degrader TMX‐2172. Angew Chem Int Ed, 59(33):13865-13870.
[115]ThomasKL, BougueninaH, MillerDSJ, et al., 2024. Degradation by design: new cyclin K degraders from old CDK inhibitors. ACS Chem Biol, 19(1):173-184.
[116]TienJF, MazloomianA, ChengSWG, et al., 2017. CDK12 regulates alternative last exon mRNA splicing and promotes breast cancer cell invasion. Nucleic Acids Res, 45(11):6698-6716.
[117]TokarskiRJ, SharpeCM, HuntsmanAC, et al., 2023. Bifunctional degraders of cyclin dependent kinase 9 (CDK9): probing the relationship between linker length, properties, and selective protein degradation. Eur J Med Chem, 254:115342.
[118]UgurluSY, McDonaldD, EnisogluR, et al., 2025. MEGA PROTAC, MEGA DOCK-based PROTAC mediated ternary complex formation pipeline with sequential filtering and rank aggregation. Sci Rep, 15:5545.
[119]VeranoAL, YouI, DonovanKA, et al., 2022. Redirecting the neo-substrate specificity of cereblon-targeting PROTACs to Helios. ACS Chem Biol, 17(9):2404-2410.
[120]VervoortSJ, DevlinJR, KwiatkowskiN, et al., 2022. Targeting transcription cycles in cancer. Nat Rev Cancer, 22(1):5-24.
[121]WanderSA, CohenO, GongXQ, et al., 2020. The genomic landscape of intrinsic and acquired resistance to cyclin-dependent kinase 4/6 inhibitors in patients with hormone receptor-positive metastatic breast cancer. Cancer Discov, 10(8):1174-1193.
[122]WangJ, ZhangRG, LinZY, et al., 2020. CDK7 inhibitor THZ1 enhances antiPD-1 therapy efficacy via the p38α/MYC/PD-L1 signaling in non-small cell lung cancer. J Hematol Oncol, 13:99.
[123]WangK, JiangMX, LiuHM, et al., 2024. Discovery of novel co-degradation CK1α and CDK7/9 PROTACs with p53 activation for treating acute myeloid leukemia. Bioorg Chem, 147:107319.
[124]WangLG, ShaoXJ, ZhongTB, et al., 2021. Discovery of a first-in-class CDK2 selective degrader for AML differentiation therapy. Nat Chem Biol, 17(5):567-575.
[125]WangLG, YangZL, LiGC, et al., 2023. Discovery of small molecule degraders for modulating cell cycle. Front Med, 17(5):823-854.
[126]WangTY, ZhangYM, ChenK, et al., 2023. CDK4/6 nano-PROTAC enhances mitochondria-dependent photodynamic therapy and anti-tumor immunity. Nano Today, 50:101890.
[127]WangYB, ZhangTH, KwiatkowskiN, et al., 2015. CDK7-dependent transcriptional addiction in triple-negative breast cancer. Cell, 163(1):174-186.
[128]WeiD, WangHL, ZengQH, et al., 2021. Discovery of potent and selective CDK9 degraders for targeting transcription regulation in triple-negative breast cancer. J Med Chem, 64(19):14822-14847.
[129]WeiMM, ZhaoR, CaoYT, et al., 2021. First orally bioavailable prodrug of proteolysis targeting chimera (PROTAC) degrades cyclin-dependent kinases 2/4/6 in vivo. Eur J Med Chem, 209:112903.
[130]WengGQ, LiD, KangY, et al., 2021. Integrative modeling of PROTAC-mediated ternary complexes. J Med Chem, 64(21):16271-16281.
[131]WoodDJ, EndicottJA, 2018. Structural insights into the functional diversity of the CDK–cyclin family. Open Biol, 8(9):180112.
[132]WuJ, YuanY, LongPriel DA, et al., 2021. Phase I study of zotiraciclib in combination with temozolomide for patients with recurrent high-grade astrocytomas. Clin Cancer Res, 27(12):3298-3306.
[133]WuMF, WangW, MaoXF, et al., 2024. Discovery of a potent CDKs/FLT3 PROTAC with enhanced differentiation and proliferation inhibition for AML. Eur J Med Chem, 275:116539.
[134]WuTZ, ZhangZM, GongGY, et al., 2023. Discovery of novel flavonoid-based CDK9 degraders for prostate cancer treatment via a PROTAC strategy. Eur J Med Chem, 260:115774.
[135]WuXW, YangXB, XiongY, et al., 2021. Distinct CDK6 complexes determine tumor cell response to CDK4/6 inhibitors and degraders. Nat Cancer, 2(4):429-443.
[136]XiaoLS, LiuY, ChenH, et al., 2023. Targeting CDK9 with selective inhibitors or degraders in tumor therapy: an overview of recent developments. Cancer Biol Ther, 24(1):2219470.
[137]XieSW, ZhuJJ, LiJD, et al., 2023. Small-molecule hydrophobic tagging: a promising strategy of druglike technology for targeted protein degradation. J Med Chem, 66(16):10917-10933.
[138]XuL, ChenY, MayakondaA, et al., 2018. Targetable BET proteins- and E2F1-dependent transcriptional program maintains the malignancy of glioblastoma. Proc Natl Acad Sci USA, 115(22):E5086-E5095.
[139]XuXQ, PanXH, WangTT, et al., 2021. Intrinsic and acquired resistance to CDK4/6 inhibitors and potential overcoming strategies. Acta Pharmacol Sin, 42(2):171-178.
[140]YangJZ, ChangY, TienJCY, et al., 2022. Discovery of a highly potent and selective dual PROTAC degrader of CDK12 and CDK13. J Med Chem, 65(16):11066-11083.
[141]YaoY, NgJF, ParkWD, et al., 2023. CDK7 controls E2F- and MYC-driven proliferative and metabolic vulnerabilities in multiple myeloma. Blood, 141(23):2841-2852.
[142]YuB, DuZK, ZhangYM, et al., 2022. Small-molecule degraders of cyclin-dependent kinase protein: a review. Future Med Chem, 14(3):167-185.
[143]ZaborowskaJ, EgloffS, MurphyS, 2016. The pol II CTD: new twists in the tail. Nat Struct Mol Biol, 23(9):771-777.
[144]ZengYP, XiaoJ, ShiL, et al., 2025. Discovery of 2,4-quinazolinedione derivatives as LC3B recruiters in the facilitation of protein complex degradations. Eur J Med Chem, 287:117293.
[145]ZhangH, ChristensenCL, DriesR, et al., 2020. CDK7 inhibition potentiates genome instability triggering anti-tumor immunity in small cell lung cancer. Cancer Cell, 37(1):37-54.e9.
[146]ZhangHH, PandeyS, TraversM, et al., 2018. Targeting CDK9 reactivates epigenetically silenced genes in cancer. Cell, 175(5):1244-1258.e26.
[147]ZhangJW, GanYC, LiHZ, et al., 2022. Inhibition of the CDK2 and Cyclin A complex leads to autophagic degradation of CDK2 in cancer cells. Nat Commun, 13:2835.
[148]ZhangZW, GolombL, MeyersonM, 2022. Functional genomic analysis of CDK4 and CDK6 gene dependency across human cancer cell lines. Cancer Res, 82(11):2171-2184.
[149]ZhaoBS, BurgessK, 2019. PROTACs suppression of CDK4/6, crucial kinases for cell cycle regulation in cancer. Chem Commun, 55(18):2704-2707.
[150]ZhengSJ, TanYH, WangZY, et al., 2022. Accelerated rational PROTAC design via deep learning and molecular simulations. Nat Mach Intell, 4(9):739-748.
[151]ZhongY, XuJ, CaoHY, et al., 2025. First ATG101-recruiting small molecule degrader for selective CDK9 degradation via autophagy-lysosome pathway. Acta Pharm Sin B, 15(5):2612-2624.
[152]ZhouF, ChenLY, CaoCG, et al., 2020. Development of selective mono or dual PROTAC degrader probe of CDK isoforms. Eur J Med Chem, 187:111952.
[153]ZhouK, ZhuangSK, LiuFL, et al., 2022. Disrupting the Cdk9/Cyclin T1 heterodimer of 7SK snRNP for the Brd4 and AFF1/4 guided reconstitution of active P-TEFb. Nucleic Acids Res, 50(2):750-762.
[154]ZhouYF, WangJ, DengMF, et al., 2019. The peptide-directed lysosomal degradation of CDK5 exerts therapeutic effects against stroke. Aging Dis, 10(5):1140-1145.
Open peer comments: Debate/Discuss/Question/Opinion
<1>