CLC number: TN92; TN43
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-01-21
Cited: 0
Clicked: 2142
Jie CUI, Peipei LI, Weixing SHENG. High linearity U-band power amplifier design: a novel intermodulation point analysis method[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(1): 176-186.
@article{title="High linearity U-band power amplifier design: a novel intermodulation point analysis method",
author="Jie CUI, Peipei LI, Weixing SHENG",
journal="Frontiers of Information Technology & Electronic Engineering",
volume="24",
number="1",
pages="176-186",
year="2023",
publisher="Zhejiang University Press & Springer",
doi="10.1631/FITEE.2200082"
}
%0 Journal Article
%T High linearity U-band power amplifier design: a novel intermodulation point analysis method
%A Jie CUI
%A Peipei LI
%A Weixing SHENG
%J Frontiers of Information Technology & Electronic Engineering
%V 24
%N 1
%P 176-186
%@ 2095-9184
%D 2023
%I Zhejiang University Press & Springer
%DOI 10.1631/FITEE.2200082
TY - JOUR
T1 - High linearity U-band power amplifier design: a novel intermodulation point analysis method
A1 - Jie CUI
A1 - Peipei LI
A1 - Weixing SHENG
J0 - Frontiers of Information Technology & Electronic Engineering
VL - 24
IS - 1
SP - 176
EP - 186
%@ 2095-9184
Y1 - 2023
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/FITEE.2200082
Abstract: A power amplifier’s linearity determines the emission signal’s quality and the efficiency of the system. Nonlinear distortion can result in system bit error, out-of-band radiation, and interference with other channels, which severely influence communication system’s quality and reliability. Starting from the third-order intermodulation point of the milimeter wave (mm-Wave) power amplifiers, the circuit’s nonlinearity is compensated for. The analysis, design, and implementation of linear class AB mm-Wave power amplifiers based on GlobalFoundries 45 nm CMOS silicon-on-insulator (SOI) technology are presented. Three single-ended and differential stacked power amplifiers have been implemented based on cascode cells and triple cascode cells operating in U-band frequencies. According to nonlinear analysis and on-wafer measurements, designs based on triple cascode cells outperform those based on cascode cells. Using single-ended measurements, the differential power amplifier achieves a measured peak power-added efficiency (PAE) of 47.2% and a saturated output power (Psat) of 25.2 dBm at 44 GHz. The amplifier achieves a Psat higher than 23 dBm and a maximum PAE higher than 25% in the measured bandwidth from 44 GHz to 50 GHz.
[1]Borel A, Barzdėnas V, Vasjanov A, 2021. Linearization as a solution for power amplifier imperfections: a review of methods. Electronics, 10(9):1073.
[2]Chen B, Shen L, Liu SP, et al., 2014. A broadband, high isolation millimeter-wave CMOS power amplifier using a transformer and transmission line matching topology. Analog Integr Circ Signal Process, 81(2):537-547.
[3]Chen HC, Zhu HS, Wu L, et al., 2021. A 9.8–30.1 GHz CMOS low-noise amplifier with a3.2-dB noise figure using inductor- and transformer-based gm-boosting techniques. Front Inform Technol Electron Eng, 22(4):586-598.
[4]Cripps SC, 2006. RF Power Amplifiers for Wireless Communications (2nd Ed.). Artech House, Norwood, USA, p.5-11.
[5]Cui J, Helmi S, Tang YH, et al., 2016. Stacking the deck for efficiency: RF- to millimeter-wave stacked CMOS SOI power amplifiers. IEEE Microw Mag, 17(12):55-69.
[6]Elkholy M, Shakib S, Dunworth J, et al., 2018. A wideband variable gain LNA with high OIP3 for 5G using 40-nm bulk CMOS. IEEE Microw Wirel Compon Lett, 28(1):64-66.
[7]Ghorbani AR, Ghaznavi-Ghoushchi MB, 2017. A novel fully differential CMOS class-E power amplifier with higher output power and efficiency for IOT application. Wirel Pers Commun, 97(2):3203-3213.
[8]Helmi SR, Mohammadi S, 2016. A highly efficient mm-Wave CMOS SOI power amplifier. Proc IEEE MTT-S Int Microwave Symp, p.1-3.
[9]Helmi SR, Chen JH, Mohammadi S, 2016. High-efficiency microwave and mm-Wave stacked cell CMOS SOI power amplifiers. IEEE Trans Microw Theory Techn, 64(7):2025-2038.
[10]Jiang ZD, Guo KZ, Huang P, et al., 2017. 45-GHz and 60-GHz 90 nm CMOS power amplifiers with a fully symmetrical 8-way transformer power combiner. Sci China Inform Sci, 60(8):080303.
[11]Kondoh H, 1986. An accurate FET modelling from measured S-parameters. IEEE MTT-S Int Microwave Symp Digest, p.377-380.
[12]Le QH, Huynh DK, Lehmann S, et al., 2021. Empirical large-signal modeling of mm-Wave FDSOI CMOS based on Angelov model. IEEE Trans Electron Dev, 68(4):1446-1453.
[13]Li TW, Huang MY, Wang H, 2019. Millimeter-wave continuous-mode power amplifier for 5G MIMO applications. IEEE Trans Microw Theory Techn, 67(7):3088-3098.
[14]Lopez-Bueno D, Wang T, Gilabert PL, et al., 2016. Amping up, saving power: digital predistortion linearization strategies for power amplifiers under wideband 4G/5G burst-like waveform operation. IEEE Microw Mag, 17(1):79-87.
[15]Mayeda J, Lie DYC, Lopez J, 2021. Broadband millimeter-wave 5G CMOS power amplifiers with high efficiency at power backoff and ESD-protection in 22nm FD-SOI. IEEE Int Midwest Symp on Circuits and Systems, p.899-902.
[16]Park HC, Park B, Cho Y, et al., 2019. A high efficiency 39GHz CMOS cascode power amplifier for 5G applications. IEEE Radio Frequency Integrated Circuits Symp, p.179-182.
[17]Reina-Tosina J, Allegue-Martínez M, Crespo-Cadenas C, et al., 2015. Behavioral modeling and predistortion of power amplifiers under sparsity hypothesis. IEEE Trans Microw Theory Techn, 63(2):745-753.
[18]Shen YF, Cui J, Mohammadi S, 2017. An accurate model for predicting high frequency noise of nanoscale NMOS SOI transistors. Sol-State Electron, 131:45-52.
[19]Varahram P, Mohammady S, Ali BM, et al., 2014. Power Efficiency in Broadband Wireless Communications. CRC Press, Boca Raton, USA, p.185-223.
[20]Vigilante M, Reynaert P, 2018. A wideband class-AB power amplifier with 29–57-GHz AM–PM compensation in0.9-V 28-nm bulk CMOS. IEEE J Sol-State Circ, 53(5):1288-1301.
[21]Wang CW, Chen YC, Lin WJ, et al., 2020. A 20.8-41.6-GHz transformer-based wideband power amplifier with 20.4-dB peak gain using 0.9-V 28-nm CMOS process. IEEE/MTT-S Int Microwave Symp, p.1323-1326.
[22]Wang H, Kousai S, Onizuka K, et al., 2015. The wireless workhorse: mixed-signal power amplifiers leverage digital and analog techniques to enhance large-signal RF operations. IEEE Microw Mag, 16(9):36-63.
[23]Wang SQ, Roger M, Sarrazin J, et al., 2020. A joint crest factor reduction and digital predistortion for power amplifiers linearization based on clipping-and-bank-filtering. IEEE Trans Microw Theory Techn, 68(7):2725-2733.
[24]Xia JJ, Fang XH, Boumaiza S, 2018. 60-GHz power amplifier in 45-nm SOI-CMOS using stacked transformer-based parallel power combiner. IEEE Microw Wirel Compon Lett, 28(8):711-713.
[25]Xu Y, Kinget PR, 2018. A chopping switched-capacitor RF receiver with integrated blocker detection. IEEE J Sol-State Circ, 53(6):1607-1617.
[26]Yeh PC, Fossum JG, 1995. Physical subthreshold MOSFET modeling applied to viable design of deep-submicrometer fully depleted SOI low-voltage CMOS technology. IEEE Trans Electron Dev, 42(9):1605-1613.
Open peer comments: Debate/Discuss/Question/Opinion
<1>