CLC number: R782.12
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-04-18
Cited: 25
Clicked: 6418
Dan-li Fu, Qiao-hong Jiang, Fu-ming He, Guo-li Yang, Li Liu. Fluorescence microscopic analysis of bone osseointegration of strontium-substituted hydroxyapatite implants[J]. Journal of Zhejiang University Science B, 2012, 13(5): 364-371.
@article{title="Fluorescence microscopic analysis of bone osseointegration of strontium-substituted hydroxyapatite implants",
author="Dan-li Fu, Qiao-hong Jiang, Fu-ming He, Guo-li Yang, Li Liu",
journal="Journal of Zhejiang University Science B",
volume="13",
number="5",
pages="364-371",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1100381"
}
%0 Journal Article
%T Fluorescence microscopic analysis of bone osseointegration of strontium-substituted hydroxyapatite implants
%A Dan-li Fu
%A Qiao-hong Jiang
%A Fu-ming He
%A Guo-li Yang
%A Li Liu
%J Journal of Zhejiang University SCIENCE B
%V 13
%N 5
%P 364-371
%@ 1673-1581
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1100381
TY - JOUR
T1 - Fluorescence microscopic analysis of bone osseointegration of strontium-substituted hydroxyapatite implants
A1 - Dan-li Fu
A1 - Qiao-hong Jiang
A1 - Fu-ming He
A1 - Guo-li Yang
A1 - Li Liu
J0 - Journal of Zhejiang University Science B
VL - 13
IS - 5
SP - 364
EP - 371
%@ 1673-1581
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1100381
Abstract: The purpose of this study was to analyze the effect of hydroxyapatite%29&ck%5B%5D=abstract&ck%5B%5D=keyword'>strontium-substituted hydroxyapatite (Sr-HA) on bone osseointegration of the implants using fluorescence microscopy. We allocated 20 implants to two groups: Sr-HA group and HA group. Electrochemically deposited HA and Sr-HA coatings were applied onto the implants separately. All the implants were inserted into femur bone of rabbits. Oxytetracycline hydrochloride, alizarin-complexon, and calcein green were respectively administered 7, 28, and 46 d after the implantation. After eight weeks, femurs were retrieved and prepared for the fluorescence microscopy observation. We analyzed the bone mineral apposition rates (MARs), bone area ratios (BARs), and bone to implant contact (BIC) of the two groups. Fluorescence microscopic observation showed that all groups exhibited extensive early peri-implant bone formation. The MAR of the Sr-HA group was greater than that for pure HA from 7 to 28 d after implantation, but no significant difference was found at later stage. And the BIC showed difference at 7 and 28 d compared with pure HA. We concluded that Sr-HA coating can improve the bone osseointegration of the implant in the early stage compared with the HA coating.
[1]Boanini, E., Gazzano, M., Bigi, A., 2010. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater., 6(6):1882-1894.
[2]Christoffersen, M.R., Christoffersen, N., Kolthoff, O., 1997. Effect of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection. Bone, 20(1):47-54.
[3]Cooper, L.F., Zhou, Y., Takebe, J., Guo, J., Abron, A., Holmen, A., Ellingsen, J.E., 2006. Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants. Biomaterials, 27(6):926-936.
[4]Friberg, B., Sennerby, L., Linden, B., Lekholm, U., 1999. Stability measurements of one-stage Brånemark implants during healing in mandibles. A clinical resonance frequency analysis study. Int. J. Oral Maxillofac. Surg., 28(4):266-272.
[5]Gentleman, E., Fredholm, Y.C., Jell, G., Lotfibakhshaiesh, N., O′Donnell, M.D., Hill, R.G., Stevens, M.M., 2010. The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials, 31(14):3949-3956.
[6]Hanawa, T., Kamira, Y., Yamamoto, S., Kohgo, T., Amemyia, A., Ukai, H., Murakami, K., Asaoka, K., 1997. Early bone formation around calcium-ion-implanted titanium inserted into rat tibia. J. Biomed. Mater. Res., 36(1):131-136.
[7]He, F., Yang, G., Wang, X., Zhao, S., 2009. Effect of electrochemically deposited nanohydroxyapatite on bone bonding of sandblasted/dual acid-etched titanium implant. Int. J. oral Maxillofac. Implants, 24(5):790-799.
[8]Jiao, M.J., Wang, X.X., 2009. Electrolytic deposition of magnesium-substituted hydroxyapatite crystals on titanium substrate. Mater. Lett., 63(27):2286-2289.
[9]Jinno, T., Kirk, S.K., Morita, S., Goldberg, V.M., 2004. Effects of calcium ion implantation on osseointegration of surface blasted titanium alloy femoral implants in a canine total hip arthroplasty model. J. Arthroplasty, 19(1):102-109.
[10]Ni, G.X., Lin, J.H., Chiu, P.K.Y., Li, Z.Y., Lu, W.W., 2010. Effect of strontium-containing hydroxyapatite bone cement on bone remodeling following hip replacement. J. Mater. Sci. Mater. Med., 21(1):377-384.
[11]Ni, G.X., Yao, Z.P., Huang, G.T., Liu, W.G., William, W., 2011. The effect of strontium incorporation in hydroxyapatite on osteoblasts in vitro. J. Mater. Sci. Mater. Med., 22(4):961-967.
[12]Nkenke, E., Kloss, F., Wiltfang, J., Schultze-Mosgau, S., Radespiel-Tröger, M., Loos, L., Neukam, F.W., 2002. Histomorphometric and fluorescence microscopic analysis of bone remodelling after installation of implants using an osteotome technique. Clin. Oral Implants Res., 13(6):595-602.
[13]Park, J.W., Suh, J.Y., Chung, H.J., 2008. Effects of calcium ion incorporation on osteoblast gene expression in MC3T3-E1 cells cultured on microstructured titanium surfaces. J. Biomed. Mater. Res., 86A(1):117-126.
[14]Park, J.W., Kim, Y.J., Jang, J.H., 2010. Enhanced osteoblast response to hydrophilic strontium and/or phosphate ions-incorporated titanium oxide surfaces. Clin. Oral Implants Res., 21(4):398-408.
[15]Patel, N., Best, S.M., Bonfield, W., Gibson, I.R., Hing, K.A., Damien, E., Revell, P.A., 2002. A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J. Mater. Sci. Mater. Med., 13(12):1199-1206.
[16]Roy, M., Bandyopadhyay, A., Bose, S., 2011. Induction plasma sprayed Sr and Mg doped nano hydroxyapatite coatings on Ti for bone implant. J. Biomed. Mater. Res. B Appl. Biomater., 99B(2):258-265.
[17]Sato, M., Sambito, M.A., Aslani, A., Kalkhoran, N.M., Slamovich, E.B., Webster, T.J., 2006. Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium. Biomaterials, 27(11):2358-2369.
[18]Sila-Asna, M., Bunyaratvej, A., Maeda, S., Kitaguchi, H., Bunyaratavej, N., 2007. Osteoblast differentiation and bone formation gene expression in stroutium-inducing bone marrow mesenchymal stem cell. Kobe J. Med. Sci., 53(1-2):25-35.
[19]Suh, J.Y., Jeung, O.C., Choi, B.J., Park, J.W., 2007. Effects of a novel calcium titanate coating on the osseointegration of blasted endosseous implants in rabbit tibiae. Clin. Oral Implants Res., 18(3):362-369.
[20]Sul, Y.T., 2003. The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials, 24(22):3893-3907.
[21]Sul, Y.T., Johansson, C., Byon, E., Albrektsson, T., 2005. The bone response of oxidized bioactive and non-bioactive titanium implants. Biomaterials, 26(33):6720-6730.
[22]Szmukler-Moncler, S., Piattelli, A., Favero, G.A., Dubruille, J.H., 2000. Considerations preliminary to the application of early and immediate loading protocols in dental implantology. Clin. Oral Implants Res., 11(1):12-25.
[23]Xue, W.C., Hosick, H.L., Bandyopadhyay, A., Bose, S., Ding, C., Luk, K.D.K., 2007. Preparation and cell-materials interactions of plasma sprayed strontium-containing hydroxyapatite coating. Surf. Coat. Technol., 201(8):4685-4693.
[24]Xue, W.C., Dahlquist, K., Banerjee, A., Bandyopadhyay, A., Bose, S., 2008. Synthesis and characterization of tricalcium phosphate with Zn and Mg based dopants. J. Mater. Sci. Mater. Med., 19:2669-2677.
[25]Yang, F., Dong, W.J., He, F.M., Wang, X.X., Zhao, S.F., Yang, G.L., 2012. Osteoblast response to porous titanium surface coated with zinc-substituted hydroxyapatite. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 113(3):313-318.
[26]Yang, G.L., He, F.M., 2009. Effects of biomimetically and electrochemically deposited nano-hydroxyapatite coatings on osseointegration of porous titanium implants. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 107(6):782-789.
[27]Yang, G.L., He, F.M., Zhao, S.S., Wang, X.X., Zhao, S.F., 2008. Effect of H2O2/HCl heat treatment of implants on in vivo peri-implant bone formation. Int. J. Oral Maxillofac. Implants, 23(6):1020-1028.
[28]Yang, L., Perez-Amodio, S., Florence, Y.F., Groot, B.D., Everts, V., Blitterswijk, C.A.V., Habibovic, P., 2010. The effects of inorganic additives to calcium phosphate on in vitro behavior of osteoblasts and osteoclasts. Biomaterials, 31(11):2976-2989.
[29]Ye, W., Wang, X.X., 2007. Effect of supersaturation on the morphologies of hydroxyapatite crystal deposited on titanium surface with electrochemical technique. Key Eng. Mater., 330-332:601-604.
[30]Zhang, W.B., Shen, Y.H., Pan, H.B., Lin, K.L., Liu, X.G., Darvell, B.W., Lu, W.W., Chang, J., Deng, L.F., Wang, D.P., et al., 2011. Effects of strontium in modified biomaterials. Acta Biomater., 7(2):800-808.
Open peer comments: Debate/Discuss/Question/Opinion
<1>