Full Text:   <3145>

Summary:  <2114>

CLC number: TQ041+.8

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 2017-01-04

Cited: 0

Clicked: 5911

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Sheng-rong Shen

http://orcid.org/0000-0003-4096-1693

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B 2017 Vol.18 No.2 P.161-171

http://doi.org/10.1631/jzus.B1500296


Effects of astaxanthin on oxidative stress induced by Cu2+ in prostate cells


Author(s):  Hong-zhou Meng, Xiao-feng Ni, Hai-ning Yu, Shan-shan Wang, Sheng-rong Shen

Affiliation(s):  Department of Urology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China; more

Corresponding email(s):   shrshen@zju.edu.cn

Key Words:  Oxidative stress, PC-3, RWPE-1, Astaxanthin, Copper ion



Abstract: 
astaxanthin (AST), a carotenoid molecule extensively found in marine organisms and increasingly used as a dietary supplement, has been reported to have beneficial effects against oxidative stress. In the current paper, the effects of AST on viability of prostate cells were investigated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay; cell apoptosis and intracellular reactive oxygen species (ROS) levels were determined by flow cytometry; the mitochondrial membrane potential (MMP) was measured by fluorospectrophotometer; and activities of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were evaluated by a detection kit. The results show that copper ion (Cu2+) induced apoptosis, along with the accumulation of intracellular ROS and MDA, in both prostate cell lines (RWPE-1 and PC-3). AST treatments could decrease the MDA levels, increase MMP, and keep ROS stable in RWPE-1 cell line. An addition of AST decreased the SOD, GSH-Px, and CAT activities in PC-3 cell line treated with Cu2+, but had a contrary reaction in RWPE-1 cell lines. In conclusion, AST could contribute to protecting RWPE-1 cells against Cu2+-induced injuries but could cause damage to the antioxidant enzyme system in PC-3 cells.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE