CLC number: S816
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2019-06-15
Cited: 0
Clicked: 5651
Daniel Brugger, Wilhelm M. Windisch. Zn metabolism of monogastric species and consequences for the definition of feeding requirements and the estimation of feed Zn bioavailability[J]. Journal of Zhejiang University Science B, 2019, 20(8): 617-627.
@article{title="Zn metabolism of monogastric species and consequences for the definition of feeding requirements and the estimation of feed Zn bioavailability",
author="Daniel Brugger, Wilhelm M. Windisch",
journal="Journal of Zhejiang University Science B",
volume="20",
number="8",
pages="617-627",
year="2019",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B1900024"
}
%0 Journal Article
%T Zn metabolism of monogastric species and consequences for the definition of feeding requirements and the estimation of feed Zn bioavailability
%A Daniel Brugger
%A Wilhelm M. Windisch
%J Journal of Zhejiang University SCIENCE B
%V 20
%N 8
%P 617-627
%@ 1673-1581
%D 2019
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B1900024
TY - JOUR
T1 - Zn metabolism of monogastric species and consequences for the definition of feeding requirements and the estimation of feed Zn bioavailability
A1 - Daniel Brugger
A1 - Wilhelm M. Windisch
J0 - Journal of Zhejiang University Science B
VL - 20
IS - 8
SP - 617
EP - 627
%@ 1673-1581
Y1 - 2019
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B1900024
Abstract: A major goal of mineral nutrition research is to provide information of feed zinc (Zn) utilization efficiency and gross Zn requirements as affected by changing rearing conditions. This can be achieved only by applying precise experimental models that acknowledge the basic principles of Zn metabolism. This review article summarizes the most important aspects of Zn homeostasis in monogastric species, including molecular aspects of Zn acquisition and excretion. Special emphasis is given to the role of the skeleton as well as the exocrine pancreas for animal Zn metabolism. Finally, we discuss consequences arising from these physiological principles for the experimental design of trials which aim to address questions of Zn requirements and bioavailability.
[1]Andreini C, Banci L, Bertini I, et al., 2006. Counting the zinc-proteins encoded in the human genome. J Proteome Res, 5(1):196-201.
[2]Andrews GK, Wang HB, Dey SK, et al., 2004. Mouse zinc transporter 1 gene provides an essential function during early embryonic development. Genesis, 40(2):74-81.
[3]Barker N, 2014. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol, 15(1):19-33.
[4]Bertrand G, Bhattacherjee RC, 1935. Recherches sur l'action combineé du zinc et des vitamins dés l'alimentation des animaux. Bull Soc Sci Hyg Aliment Ration Homme, 23: 369-376 (in French).
[5]Bozym RA, Chimienti F, Giblin LJ, et al., 2010. Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro. Exp Biol Med, 235(6):741-750.
[6]Brugger D, 2018. Experimental Modelling of Subclinical Zinc Deficiency in Weaned Piglets. PhD Dissertation, Technical University of Munich, Freising, Germany, p.171-208.
[7]Brugger D, Windisch WM, 2015. Environmental responsibilities of livestock feeding using trace mineral supplements. Anim Nutr, 1(3):113-118.
[8]Brugger D, Windisch W, 2016a. Subclinical zinc deficiency impairs pancreatic digestive enzyme activity and digestive capacity of weaned piglets. Br J Nutr, 116(3):425-433.
[9]Brugger D, Windisch W, 2016b. Subclinical zinc deficiency impairs pancreatic digestive enzyme activity and digestive capacity of weaned piglets—CORRIGENDUM. Br J Nutr, 116(5):950-951.
[10]Brugger D, Windisch WM, 2017a. Short-term subclinical zinc deficiency in weaned piglets affects cardiac redox metabolism and zinc concentration. J Nutr, 147(4):521-527.
[11]Brugger D, Windisch WM, 2017b. Strategies and challenges to increase the precision in feeding zinc to monogastric livestock. Anim Nutr, 3(2):103-108.
[12]Brugger D, Buffler M, Windisch W, 2014. Development of an experimental model to assess the bioavailability of zinc in practical piglet diets. Arch Anim Nutr, 68(2):73-92.
[13]Brugger D, Schlattl M, Windisch W, 2018. Short-term kinetics of tissue zinc exchange in 65Zn-labelled adult rats receiving sufficient dietary zinc supply. Proc Soc Nutr Physiol, 27:96.
[14]Brugnera E, Georgiev O, Radtke F, et al., 1994. Cloning, chromosomal mapping and characterization of the human metal-regulatory transcription factor MTF-1. Nucleic Acids Res, 22(15):3167-3173.
[15]Caulfield LE, Black RE, 2004. Zinc deficiency. In: Ezzati M, Lopez AD, Rodgers A, et al. (Eds.), Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors. World Health Organization, Geneva, Switzerland.
[16]Colvin RA, Holmes WR, Fontaine CP, et al., 2010. Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics, 2(5):306-317.
[17]Cosgrove DJ, 1980. Inositol Phosphates: Their Chemistry, Biochemistry and Physiology. Elsevier Scientific Publication, Amsterdam.
[18]Cousins RJ, McMahon RJ, 2000. Integrative aspects of zinc transporters. J Nutr, 130(5):1384S-1387S.
[19]Curry-McCoy TV, Guidot DM, Joshi PC, 2013. Chronic alcohol ingestion in rats decreases Krüppel-like factor 4 expression and intracellular zinc in the lung. Alcohol Clin Exp Res, 37(3):361-371.
[20]Dufner-Beattie J, Wang FD, Kuo YM, et al., 2003. The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice. J Biol Chem, 278(35):33474-33481.
[21]Dufner-Beattie J, Kuo YM, Gitschier J, et al., 2004. The adaptive response to dietary zinc in mice involves the differential cellular localization and zinc regulation of the zinc transporters ZIP4 and ZIP5. J Biol Chem, 279(47):49082-49090.
[22]Dufner-Beattie J, Weaver BP, Geiser J, et al., 2007. The mouse acrodermatitis enteropathica gene Slc39a4 (Zip4) is essential for early development and heterozygosity causes hypersensitivity to zinc deficiency. Hum Mol Genet, 16(12):1391-1399.
[23]Eide DJ, 2011. The oxidative stress of zinc deficiency. Metallomics, 3(11):1124-1129.
[24]Ettle T, Windisch W, Roth FX, 2005. The effect of phytase on the bioavailability of zinc in piglets. In: Strain JJ (Ed.), TEMA 12: 12th International Symposium on Trace Elements in Man and Animals. University of Ulster, Coleraine, Northern Ireland, UK, p.55.
[25]The European Commission, 2016. Commission Implementing regulation (EU) 2016/1095 of 6 July 2016 concerning the authorisation of Zinc acetate dihydrate, Zinc chloride anhydrous, Zinc oxide, Zinc sulphate heptahydrate, Zinc sulphate monohydrate, Zinc chelate of amino acids hydrate, Zinc chelate of protein hydrolysates, Zinc chelate of glycine hydrate (solid) and Zinc chelate of glycine hydrate (liquid) as feed additives for all animal species and amending Regulations (EC) No 1334/2003, (EC) No 479/2006, (EU) No 335/2010 and Implementing Regulations (EU) No 991/2012 and (EU) No 636/2013. Official J Eur Union, 182:7-27.
[26]Folk JE, Schirmer EW, 1963. The porcine pancreatic carboxypeptidase A system. I. Three forms of the active enzyme. J Biol Chem, 238(12):3884-3894.
[27]Folk JE, Piez KA, Carroll WR, et al., 1960. Carboxy-peptidase B. 4. Purification and characterization of the porcine enzyme. J Biol Chem, 235(8):2272-2277.
[28]Fukada T, Kambe T, 2011. Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics, 3(7):662-674.
[29]Guo L, Lichten LA, Ryu MS, et al., 2010. STAT5-glucocorticoid receptor interaction and MTF-1 regulate the expression of ZnT2 (Slc30a2) in pancreatic acinar cells. Proc Natl Acad Sci USA, 107(7):2818-2823.
[30]Haase H, Rink L, 2014. Multiple impacts of zinc on immune function. Metallomics, 6(7):1175-1180.
[31]Hara H, Konishi A, Kasai T, 2000. Contribution of the cecum and colon to zinc absorption in rats. J Nutr, 130(1):83-89.
[32]Holt RR, Uiu-Adams JY, Keen CL, 2012. Zinc. In: Erdman JW, Macdonald IA, Zeisel SH (Eds.), Present Knowledge in Nutrition. Wiley-Blackwell, Hoboken, New Jersey, p.521-539.
[33]Hsu JM, Anilane JK, Scanlan DE, 1966. Pancreatic carboxypeptidases: activities in zinc deficient rats. Science, 153(3738):882-883.
[34]Kambe T, Andrews GK, 2009. Novel proteolytic processing of the ectodomain of the zinc transporter ZIP4 (SLC39A4) during zinc deficiency is inhibited by acrodermatitis enteropathica mutations. Mol Cell Biol, 29(1):129-139.
[35]Klasing KC, Goff JP, Greger JL, et al., 2005. Zinc. In: National Research Council (Ed.), Mineral Tolerance of Animals. The National Academies Press, Washington, DC, USA, p.413-427.
[36]Klein BG, 2019. Cunningham’s Textbook of Veterinary Physiology, 6th Ed. Elsevier, St. Louis, Missouri, USA, p.307-315.
[37]Kloubert V, Blaabjerg K, Dalgaard TS, et al., 2018. Influence of zinc supplementation on immune parameters in weaned pigs. J Trace Elem Med Biol, 49:231-240.
[38]Lallés JP, Bosi P, Smidt H, et al., 2007. Nutritional management of gut health in pigs around weaning. Proc Nutr Soc, 66(2):260-268.
[39]Langmade SJ, Ravindra R, Daniels PJ, et al., 2000. The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J Biol Chem, 275(44):34803-34809.
[40]Lankisch PG, Apte M, Banks PA, 2015. Acute pancreatitis. Lancet, 386(9988):85-96.
[41]Legg SP, Sears L, 1960. Zinc sulphate treatment of parakeratosis in cattle. Nature, 186(4730):1061-1062.
[42]Levaot N, Hershfinkel M, 2018. How cellular Zn2+ signaling drives physiological functions. Cell Calcium, 75:53-63.
[43]Lewis PK, Hoekstra WG, Grummer RH, et al., 1956. The effect of certain nutritional factors including calcium, phosphorus and zinc on parakeratosis. J Anim Sci, 15(3):741-751.
[44]Lewis PK, Hoekstra WG, Grummer RH, 1957a. Restricted calcium feeding versus zinc supplementation for the control of parakeratosis in swine. J Anim Sci, 16(3):578-588.
[45]Lewis PK, Grummer RH, Hoekstra WC, 1957b. The effect of method of feeding upon the susceptibility of the pig to parakeratosis. J Anim Sci, 16(4):927-936.
[46]Lichten LA, Cousins RJ, 2009. Mammalian zinc transporters: nutritional and physiologic regulation. Ann Rev Nutr, 29:153-176.
[47]Liptrap DO, Miller ER, Ullrey DE, et al., 1970. Sex influence on the zinc requirement of developing swine. J Anim Sci, 30(5):736-741.
[48]Liuzzi JP, Blanchard RK, Cousins RJ, 2001. Differential regulation of zinc transporter 1, 2, and 4 mRNA expression by dietary zinc in rats. J Nutr, 131(1):46-52.
[49]Liuzzi JP, Bobo JA, Lichten LA, et al., 2004. Responsive transporter genes within the murine intestinal-pancreatic axis form a basis of zinc homeostasis. Proc Natl Acad Sci USA, 101(40):14355-14360.
[50]Liuzzi JP, Guo L, Chang SM, et al., 2009. Krüppel-like factor 4 regulates adaptive expression of the zinc transporter Zip4 in mouse small intestine. Am J Physiol Gastrointest Liver Physiol, 296(3):G517-G523.
[51]Luecke RW, Hoefer JA, Brammell WS, et al., 1956. Mineral interrelationships in parakeratosis of swine. J Anim Sci, 15(2):347-351.
[52]Mao XQ, Kim BE, Wang FD, et al., 2007. A histidine-rich cluster mediates the ubiquitination and degradation of the human zinc transporter, hZIP4, and protects against zinc cytotoxicity. J Biol Chem, 282(10):6992-7000.
[53]Maret W, 2013. Inhibitory zinc sites in enzymes. BioMetals, 26(2):197-204.
[54]Martin L, Lodemann U, Bondzio A, et al., 2013. A high amount of dietary zinc changes the expression of zinc transporters and metallothionein in jejunal epithelial cells in vitro and in vivo but does not prevent zinc accumulation in jejunal tissue of piglets. J Nutr, 143(8):1205-1210.
[55]Matsuno S, Miyashita E, Ejiri T, et al., 1982. Zinc and magnesium output in pancreatic juice after pancreaticoduodenectomy. Tohoku J Exp Med, 136(1):11-22.
[56]McMahon RJ, Cousins RJ, 1998. Regulation of the zinc transporter ZnT-1 by dietary zinc. Proc Natl Acad Sci USA, 95(9):4841-4846.
[57]Michalke B, 2016. Metallomics: Analytical Techniques and Speciation Methods. Wiley-VCH, Weinheim, Germany.
[58]Mills CF, Quarterman J, Williams RB, et al., 1967. The effects of zinc deficiency on pancreatic carboxypeptidase activity and protein digestion and absorption in the rat. Biochem J, 102(3):712-718.
[59]Nielsen FH, 2012. History of zinc in agriculture. Adv Nutr, 3(6):783-789.
[60]Oberleas D, 1996. Mechanism of zinc homeostasis. J Inorg Biochem, 62(4):231-241.
[61]O'Dell BL, Newberne PM, Savage JE, 1977. Significance of dietary zinc for the growing chicken. J Nutr, 65(4):503-518.
[62]O'Leary NA, Wright MW, Brister JR, et al., 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res, 44(D1):D733-D745.
[63]Pace NJ, Weerapana E, 2014. Zinc-binding cysteines: diverse functions and structural motifs. Biomolecules, 4(2):419-434.
[64]Pieper R, Martin L, Schunter N, et al., 2015. Impact of high dietary zinc on zinc accumulation, enzyme activity and proteomic profiles in the pancreas of piglets. J Trace Elem Med Biol, 30:30-36.
[65]Prasad AS, 1985. Clinical manifestations of zinc deficiency. Annu Rev Nutr, 5(1):341-363.
[66]Raulin J, 1869. Études cliniques sur la vegetation. Ann Sci Nat Bot Biol Veg Ser, 5:93 (in French).
[67]Robbins KR, Saxton AM, Southern LL, 2006. Estimation of nutrient requirements using broken-line regression analysis. J Anim Sci, 84(Suppl_13):E155-E165.
[68]Roth HP, Kirchgessner M, 1974. The activity of the pancreas carboxypeptidase A and B during zinc depletion and repletion. Z Tierphysiol Tierernahr Futtermittelkd, 33:62-67 (in German).
[69]Roth HP, Schülein A, Kirchgessner M, 1992. Influence of alimentary zinc deficiency on digestiblity of nutrients and zinc utilization in force-fed rats. J Anim Physiol Anim Nutr, 68(3):136-145 (in German).
[70]Sandstead HH, 1995. Requirements and toxicity of essential trace elements, illustrated by zinc and copper. Am J Clin Nutr, 61(3 Suppl):621S-624S.
[71]Sandström B, 2001. Micronutrient interactions: effects on absorption and bioavailability. Brit J Nutr, 85(Suppl 2):S181-S185.
[72]Schwarz FJ, Kirchgessner M, 1976. Partition and endogenous secretion of Zn given iv. in rats with varying Zn intake. Zbl Vet Med A, 23(10):836-848 (in German).
[73]Schweigel-Röntgen M, 2014. The families of zinc (SLC30 and SLC39) and copper (SLC31) transporters. Curr Top Membr, 73:321-355.
[74]Shanklin SH, Miller ER, Ullrey DE, et al., 1968. Zinc requirement of baby pigs on casein diets. J Nutr, 96(1):101-108.
[75]Smith WH, Plumlee MP, Beeson WM, 1958. Zinc requirement for growing swine. Science, 128(3334):1280-1281.
[76]Smith WH, Plumlee MP, Beeson WM, 1962. Effect of source of protein on zinc requirement of the growing pig. J Anim Sci, 21(3):399-405.
[77]Sommer AL, Lipman CB, 1926. Evidence on the indispensable nature of zinc and boron for higher green plants. Plant Physiol, 1(3):231-249.
[78]Stevenson JW, Earle IP, 1956. Studies on parakeratosis in swine. J Anim Sci, 15(4):1036-1045.
[79]Todd WR, Elvehjem CA, Hart EB, 1934. Zinc in the nutrition of the rat. Am J Physiol, 107:146-156.
[80]Tucker HF, Salmon WD, 1955. Parakeratosis or zinc deficiency disease in the pig. Proc Soc Exp Biol Med, 88(4):613-616.
[81]Wang K, Zhou B, Kuo YM, et al., 2002. A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet, 71(1):66-73.
[82]Weaver BP, Dufner-Beattie J, Kambe T, et al., 2007. Novel zinc-responsive post-transcriptional mechanisms reciprocally regulate expression of the mouse Slc39a4 and Slc39a5 zinc transporters (Zip4 and Zip5). Biol Chem, 388(12):1301-1312.
[83]Weigand E, Kirchgessner M, 1980. Total true efficiency of zinc utilization: determination and homeostatic dependence upon the zinc supply status in young rats. J Nutr, 110(3):469-480.
[84]Windisch W, 2001. Homeostatic reactions of quantitative Zn metabolism on deficiency and subsequent repletion with Zn in 65Zn-labeled adult rats. Trace Elem Elec, 18(3):122-128.
[85]Windisch W, 2002. Interaction of chemical species with biological regulation of the metabolism of essential trace elements. Anal Bioanal Chem, 372(3):421-425.
[86]Windisch W, 2003a. Development of zinc deficiency in 65Zn labeled, fully grown rats as a model for adult individuals. J Trace Elem Med Biol, 17(2):91-96.
[87]Windisch W, 2003b. Effect of microbial phytase on the bioavailability of zinc in piglet diets. Proc Soc Nutr Physiol, 12:33.
[88]Windisch W, Kirchgessner M, 1994a. Measurement of homeostatic adaption of Zn metabolism to deficient and high zinc supply after an alimentary 65Zn labeling procedure. 1. Effect of different zinc supply on the quantitative zinc exchange in the metabolism of adult rats. J Anim Physiol Anim Nutr, 71(1-5):98-107 (in German).
[89]Windisch W, Kirchgessner M, 1994b. Zinc excretion and the kinetics of zinc exchange in the whole-body zinc at deficient and excessive zinc supply. 2. Effect of different zinc supply on quantitative zinc exchange in the metabolism of adult rats. J Anim Physiol Anim Nutr, 71(1-5):123-130 (in German).
[90]Windisch W, Kirchgessner M, 1999. Zinc absorption and excretion in adult rats at zinc deficiency induced by dietary phytate additions: I. Quantitative zinc metabolism of 65Zn-labelled adult rats at zinc deficiency. J Anim Physiol Anim Nutr, 82(2-3):106-115.
[91]Windisch W, Wher U, Rambeck W, et al., 2002. Effect of Zn deficiency and subsequent Zn repletion on bone mineral composition and markers of bone tissue metabolism in 65Zn-labelled, young-adult rats. J Anim Physiol Anim Nutr, 86(7-8):214-221.
Open peer comments: Debate/Discuss/Question/Opinion
<1>