CLC number: TN79
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2012-04-11
Cited: 10
Clicked: 9402
Lin-rong Xiao, Xie-xiong Chen, Shi-yan Ying. Design of dual-edge triggered flip-flops based on quantum-dot cellular automata[J]. Journal of Zhejiang University Science C, 2012, 13(5): 385-392.
@article{title="Design of dual-edge triggered flip-flops based on quantum-dot cellular automata",
author="Lin-rong Xiao, Xie-xiong Chen, Shi-yan Ying",
journal="Journal of Zhejiang University Science C",
volume="13",
number="5",
pages="385-392",
year="2012",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.C1100287"
}
%0 Journal Article
%T Design of dual-edge triggered flip-flops based on quantum-dot cellular automata
%A Lin-rong Xiao
%A Xie-xiong Chen
%A Shi-yan Ying
%J Journal of Zhejiang University SCIENCE C
%V 13
%N 5
%P 385-392
%@ 1869-1951
%D 2012
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.C1100287
TY - JOUR
T1 - Design of dual-edge triggered flip-flops based on quantum-dot cellular automata
A1 - Lin-rong Xiao
A1 - Xie-xiong Chen
A1 - Shi-yan Ying
J0 - Journal of Zhejiang University Science C
VL - 13
IS - 5
SP - 385
EP - 392
%@ 1869-1951
Y1 - 2012
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.C1100287
Abstract: quantum-dot cellular automata (QCA) technology has been widely considered as an alternative to complementary metal–oxide–semiconductor (CMOS) due to QCA’s inherent merits. Many interesting QCA-based logic circuits with smaller feature size, higher operating frequency, and lower power consumption than CMOS have been presented. However, QCA is limited in its sequential circuit design with high performance flip-flops. Based on a brief introduction of QCA and dual-edge triggered (DET) flip-flop, we propose two original QCA-based D and JK DET flip-flops, offering the same data throughput of corresponding single-edge triggered (SET) flip-flops at half the clock pulse frequency. The logic functionality of the two proposed flip-flops is verified with the QCADesigner tool. All the proposed QCA-based DET flip-flops show higher performance than their SET counterparts in terms of data throughput. Furthermore, compared with a previous DET D flip-flop, the number of cells, covered area, and time delay of the proposed DET D flip-flop are reduced by 20.5%, 23.5%, and 25%, respectively. By using a lower clock pulse frequency, the proposed DET flip-flops are promising for constructing QCA sequential circuits and systems with high performance.
[1]Amiri, M.A., Mahdavi, M., Mirzakuchaki, S., 2008. QCA Implementation of a MUX-Based FPGA CLB. Proc. Int. Conf. on Nanoscience and Nanotechnology, p.141-144.
[2]Amlani, I., Orlov, A.O., Toth, G., Bernstein, G.H., Lent, C.S., Snider, G.L., 1999. Digital logic gate using quantum-dot cellular automata. Science, 284(5412):289-291.
[3]Amlani, I., Orlov, A.O., Kummamuru, R.K., Bernstein, G.H., Lent, C.S., Snider, G.L., 2000. Experimental demonstration of a leadless quantum-dot cellular automata cell. Appl. Phys. Lett., 77(5):738-740.
[4]Askari, M., Taghizadeh, M., Fardad, K., 2008. Design and Analysis of a Sequential Ring Counter for QCA Implementation. Int. Conf. on Computer and Communication Engineering, p.933-936.
[5]Blair, G.M., 1997. Low-power double-edge triggered flipflop. Electron. Lett., 33(10):845-847.
[6]Bonci, L., Gattobigio, M., Iannaccone, G., Macucci, M., 2002. Simulation of time evolution of clocked and nonclocked quantum cellular automaton circuits. J. Appl. Phys., 92(6):3169-3178.
[7]Cho, H., Swartzlander, E.E., 2009. Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput., 58(6):721-727.
[8]Dehkordi, M.A., Shamsabadi, A.S., Ghahfarokhi, B.S., Vafaei, A., 2011. Novel RAM cell designs based on inherent capabilities of quantum-dot cellular automata. Microelectron. J., 42(5):701-708.
[9]Devadoss, R., Paul, K., Balakrishnan, M., 2009. Coplanar QCA crossovers. Electron. Lett., 45(24):1234-1235.
[10]Gin, A., Williams, S., Meng, H., Tougaw, P.D., 1999. Hierarchical design of quantum-dot cellular automata devices. J. Appl. Phys., 85(7):3713-3720.
[11]Hossain, R., Wronski, L.D., Albicki, A., 1994. Low power design using double edge triggered flip-flops. IEEE Trans. VLSI Syst., 2(2):261-265.
[12]Huang, J., Momenzadeh, M., Lombardi, F., 2007. Design of sequential circuits by quantum-dot cellular automata. Microelectron. J., 38(4-5):525-537.
[13]Kong, K., Shang, Y., Lu, R., 2010. Counter Designs in Quantum-Dot Cellular Automata. 10th IEEE Conf. on Nanotechnology, p.1130-1134.
[14]Lent, C.S., Isaksen, E., 2003. Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Dev., 50(9):1890-1895.
[15]Lent, C.S., Tougaw, P.D., Porod, W., 1993. Bistable saturation in coupled quantum dots for quantum cellular automata. Appl. Phys. Lett., 62(7):714-716.
[16]Lent, C.S., Tougaw, P.D., Porod, W., 1994. Quantum Cellular Automata: the Physics of Computing and Arrays of Quantum Dot Molecules. Proc. Workshop on Physics and Computation, p.5-13.
[17]Mardiris, V.A., Karafyllidis, I.G., 2010. Design and simulation of modular 2n to 1 quantum-dot cellular automata (QCA) multiplexers. Int. J. Circ. Theory Appl., 38(8):771-785.
[18]Nedovic, N., Oklobdzija, V.G., 2005. Dual-edge triggered storage elements and clocking strategy for low-power systems. IEEE Trans. VLSI Syst., 13(5):577-590.
[19]Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Snider, G.L., 1997. Realization of a functional cell for quantum-dot cellular automata. Science, 277(5328):928-930.
[20]Ottavi, M., Pontarelli, S., DeBenedictis, E., Salsano, A., Frost-Murphy, S., Kogge, P., Lombardi, F., 2011. Partially reversible pipelined QCA circuits: combining low power with high throughput. IEEE Trans. Nanotechnol., 10(6):1383-1393.
[21]Qiu, K., Xia, Y., 2007. Quantum-Dots Cellular Automata Comparator. 7th Int. Conf. on ASIC, p.1297-1300.
[22]Shamsabadi, A.S., Ghahfarokhi, B.S., Zamanifar, K., Movahedinia, N., 2009. Applying inherent capabilities of quantum-dot cellular automata to design: D flip-flop case study. J. Syst. Archit., 55(3):180-187.
[23]Torabi, M., 2011. A New Architecture for T Flip Flop Using Quantum-Dot Cellular Automata. 3rd Asia Symp. on Quality Electronic Design, p.296-300.
[24]Vankamamidi, V., Ottavi, M., Lombardi, F., 2008. A serial memory by quantum-dot cellular automata (QCA). IEEE Trans. Comput., 57(5):606-618.
[25]Venkataramani, P., Srivastava, S., Bhanja, S., 2008. Sequential Circuit Design in Quantum Dot Cellular Automata. 8th IEEE Conf. on Nanotechnology, p.534-537.
[26]Walus, K., Dysart, T.J., Jullien, G.A., Budiman, A.R., 2004. QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol., 3(1):26-31.
[27]Wang, W., Walus, K., Jullien, G.A., 2003. Quantum-Dot Cellular Automata Adders. Proc. 3rd IEEE Conf. on Nanotechnology, p.461-464.
[28]Wu, X., Wei, J., 1998. CMOS edge-triggered flip-flop using one latch. Electron. Lett., 34(16):1581-1582.
[29]Yang, X., Cai, L., Zhao, X., Zhang, N., 2010a. Design and simulation of sequential circuits in quantum-dot cellular automata: falling edge-triggered flip-flop and counter study. Microelectron. J., 41(1):56-63.
[30]Yang, X., Cai, L., Zhao, X., 2010b. Low power dual-edge triggered flip-flop structure in quantum dot cellular automata. Electron. Lett., 46(12):825-826.
[31]Zeng, L., Wang, Q., Dai, Y., 2005. A new phenomenon of quantum-dot cellular automata. J. Zhejiang Univ.-Sci., 6A(10):1090-1094.
[32]Zhao, P., McNeely, J., Golconda, P., Bayoumi, M.A., Barcenas, R.A., Kuang, W., 2007. Low-power clock branch sharing double-edge triggered flip-flop. IEEE Trans. VLSI Syst., 15(3):338-345.
Open peer comments: Debate/Discuss/Question/Opinion
<1>