CLC number: Q343
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2010-09-03
Cited: 22
Clicked: 6203
Hong-xing Li, Lei Xiao, Cheng Wang, Jia-li Gao, Yong-gong Zhai. Epigenetic regulation of adipocyte differentiation and adipogenesis[J]. Journal of Zhejiang University Science B, 2010, 11(10): 784-791.
@article{title="Epigenetic regulation of adipocyte differentiation and adipogenesis",
author="Hong-xing Li, Lei Xiao, Cheng Wang, Jia-li Gao, Yong-gong Zhai",
journal="Journal of Zhejiang University Science B",
volume="11",
number="10",
pages="784-791",
year="2010",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B0900401"
}
%0 Journal Article
%T Epigenetic regulation of adipocyte differentiation and adipogenesis
%A Hong-xing Li
%A Lei Xiao
%A Cheng Wang
%A Jia-li Gao
%A Yong-gong Zhai
%J Journal of Zhejiang University SCIENCE B
%V 11
%N 10
%P 784-791
%@ 1673-1581
%D 2010
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B0900401
TY - JOUR
T1 - Epigenetic regulation of adipocyte differentiation and adipogenesis
A1 - Hong-xing Li
A1 - Lei Xiao
A1 - Cheng Wang
A1 - Jia-li Gao
A1 - Yong-gong Zhai
J0 - Journal of Zhejiang University Science B
VL - 11
IS - 10
SP - 784
EP - 791
%@ 1673-1581
Y1 - 2010
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B0900401
Abstract: It is generally agreed that adipocytes originate from mesenchymal stem cells in what can be divided into two processes: determination and differentiation. In the past decade, many factors associated with epigenetic signals have been proved to be pivotal for the appropriate timing of adipogenesis progression. A large number of coregulators at critical gene promoters set up specific patterns of DNA methylation, histone acetylation and methylation, and nucleosome rearrangement, that act as an epigenetic code to modulate the correct progress of adipocyte differentiation and adipogenesis during adipogenesis. In this review, we focus on the functions and roles of epigenetic processes in preadipocyte differentiation and adipogenesis.
[1]Armoni, M., Harel, C., Karni, S., Chen, H., Yoseph, F., Marel, R., Quon, M.J., Karnieli, E., 2006. FoxO1 represses peroxisome proliferator-activated receptor-γ1 and -γ2 gene promoters in primary adipocytes. J. Biol. Chem., 281(29):19881-19891.
[2]Bowers, R.R., Kim, J.W., Otto, T.C., Lane, M.D., 2006. Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation: role of the BMP-4 gene. PNAS, 103(35):13022-13027.
[3]Cederberg, A., Gronning, L.M., Ahren, B., Tasken, K., Carlsson, P., Enerback, S., 2001. FoxC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell, 106(5):563-573.
[4]Cho, M.C., Lee, K., Paik, S.G., Yoon, D.Y., 2008. Peroxisome proliferators-activated receptor (PPAR) modulators and metabolic disorders. PPAR Res., 2008:1-14.
[5]Cho, Y.W., Hong, S.H., Jin, Q., Wang, L.F., Lee, J.E., Gavrilova, O., Ge, K., 2009. Histone methylation regulator PTIP Is required for PPARγ and C/EBPα expression and adipogenesis. Cell Metab., 10(1):27-39.
[6]Cornelius, P., MacDougald, O.A., Lane, M.D., 1994. Regulation of adipocyte development. Annu. Rev. Nutr., 14(1):99-129.
[7]D′Alessio, A.C., Weaver, I.C., Szyf, M., 2007. Acetylation-induced transcription is required for active DNA demethylation in methylation-silenced genes. Mol. Cell. Biol., 27(21):7462-7474.
[8]Darlington, G.J., Ross, S.E., MacDougald, O.A., 1998. The role of C/EBP genes in adipocyte differentiation. J. Biol. Chem., 273(46):30057-30060.
[9]Dolinoy, D.C., Jirtle, R.L., 2008. Environmental epigenomics in human health and disease. Environ. Mol. Mutagen., 49(1):4-8.
[10]Farmer, S.R., 2006. Transcriptional control of adipocyte formation. Cell Metabolism, 4(4):263-273.
[11]Feige, J.N., Auwerx, J., 2007. Transcriptional coregulators in the control of energy homeostasis. Trends Cell Biol., 17(6):292-301.
[12]Fox, K.E., Colto, L.A., Erickson, P.F., Friedman, J.E., Cha, H.C., Keller, P., MacDougald, O.A., Klemm, D.J., 2008. Regulation of cyclin D1 and Wnt10b gene expression by cAMP-responsive element-binding protein during early adipogenesis involves differential promoter methylation. J. Biol. Chem., 283(50):35096-35105.
[13]Fu, M., Rao, M., Bouras, T., Wang, C., Wu, K., Zhang, X., Li, Z.P., Yao, T., Pestell1, R.G., 2005. Cyclin D1 inhibits PPARγ-mediated adipogenesis through histone deacetylase recruitment. J. Biol. Chem., 280(17):16934-16941.
[14]Fujiki, K., Kano, F., Shiota, K., Murata, M., 2009. Expression of the peroxisome proliferator activated receptor γ gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes. BMC Biology, 7:38.
[15]Giandomenico, V., Simonsson, M., Gronroos, E., Ericsson, J., 2003. Coactivator-dependent acetylation stabilizes members of the SREBP family of transcription factors. Mol. Cell. Biol., 23(7):2587-2599.
[16]Green, H., Kehinde, O., 1974. Sublines of mouse 3T3 cells that accumulate lipid. Cell, 1(3):113-116.
[17]Green, H., Kehinde, O., 1975. An established preadipose cell line and its differentiation in culture II. Factors affecting the adipose conversion. Cell, 5(1):19-27.
[18]Green, H., Kehinde, O., 1976. Spontaneous heritable changes leading to increased adipose conversion in 3T3 cells. Cell, 7(1):105-113.
[19]Guan, H.P., Ishizuka, T., Chui, P.C., Lehrke, M., Lazar, M.A., 2005. Corepressors selectively control the transcriptional activity of PPARγ in adipocytes. Genes Dev., 19(4):453-461.
[20]Guo, W., Zhang, K.M., Tu, K., Li, Y.X., Zhu, L., Xiao, H.S., Yang, Y., Wu, J.R., 2009. Adipogenesis licensing and execution are disparately linked to cell proliferation. Cell Res., 19(2):216-223.
[21]Hansen, J.B., Jorgensen, C., Petersen, R.K., Hallenborg, P., de Matteis, R., Boye, H.A., Petrovic, N., Enerback, S., Nedergaard, J., Cinti, S., et al., 2004. Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation. PNAS, 101(12):4112-4117.
[22]Horii, T., Morita, S., Kimura, M., Hatada, I., 2009. Epigenetic regulation of adipocyte differentiation by a Rho guanine nucleotide exchange factor, WGEF. PLoS ONE, 4(6):e5809.
[23]Huang, H.J., Donald, J.T., 2007. Dynamic FoxO transcription factors. J. Cell. Sci., 120(15):2479-2487.
[24]Johnson, P.F., 2005. Molecular stop signs: regulation of cell-cycle arrest by C/EBP transcription factors. J. Cell Sci., 118(12):2545-2555.
[25]Kajimura, S., Seale, P., Tomaru, T., Erdjument-Bromage, H., Cooper, M.P., Ruas, J.L., Chin, S., Tempst, P., Lazar, M.A., Spiegelman, B.M., 2008. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev., 22(10):1397-1409.
[26]Kershaw, E.E., Flier, J.S., 2004. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab., 89(6):2548-2556.
[27]Kouzarides, T., 2007. Chromatin modifications and their function. Cell, 128(4):693-705.
[28]Lee, Y.S., Sohn, D.H., Han, D., Lee, H.W., Seong, R.H., Kim, J.B., 2007. Chromatin remodeling complex interacts with ADD1/SREBP1c to mediate insulin-dependent regulation of gene expression. Mol. Cell. Biol., 27(2):438-452.
[29]Liu, L., Li, Y.Y., Tollefsbol, T., 2008. Gene-environment interactions and epigenetic basis of human diseases. Curr. Issues Mol. Biol., 10(1):25-36.
[30]Luo, C., Yao, Y., Wang, R.J., Yan, F.M., Hu, D.X., Zhang, X.L., 2002. The use of mitochondrial cytochrome oxidase I (mtCOI) gene sequences for the identification of biotypes of Bemisia tabaci (Gennadius) in China. Acta Entomol. Sin. 45(6):759-763 (in Chinese).
[31]Marcos, A., Montero, A., Lopez-Varela, S., Morande, G., 2001. Eating disorders (obesity, anorexia nervosa, bulimia nervosa), immunity, and infection. Nutr. Immun. Infect. Infants Child., 45:243-262.
[32]Martin, C., Zhang, Y., 2005. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol., 6(11):838-849.
[33]Müller, C., Calkhoven, C.F., Sha, X., Leutz, A., 2004. C/EBPα requires a SWI/SNF complex for proliferation arrest. J. Biol. Chem., 279(8):7353-7358.
[34]Musri, M.M., Corominola, H., Casamitjana, R., Gomis, R., Parrizas, M., 2006. Histone H3 lysine 4 dimethylation signals the transcriptional competence of the adiponectin promoter in preadipocytes. J. Biol. Chem., 281(25):17180-17188.
[35]Musri, M.M., Gomis, R., Párrizas, M., 2007. Chromatin and chromatin-modifying proteins in adipogenesis. Cell Biol., 85(4):397-410.
[36]Narlikar, G.J., Fan, H.Y., Kingston, R.E., 2002. Cooperation between complexes that regulate chromatin structure and transcription. Cell, 108(4):475-487.
[37]Nerlov, C., 2008. C/EBPs: recipients of extracellular signals through proteome modulation. Curr. Opin. Cell Biol., 20(2):180-185.
[38]Noer, A., Sorensen, A.L., Boquest, A.C., Collas, P., 2006. Stable CpG hypomethylation of adipogenic promoters in freshly isolated, cultured, and differentiated mesenchymal stem cells from adipose tissue. Mol. Biol. Cell, 17(8):3543-3556.
[39]Okada, Y., Sakaue, H., Nagare, T., Kasuga, M., 2009. Diet-induced up-regulation of gene expression in adipocytes without changes in DNA methylation. Kobe J. Med. Sci., 54(5):241-249.
[40]Qiu, J., 2009. Cellular differentiation: a two-stage procedure. Cell Res., 19:216-223.
[41]Quina, A.S., Buschbeck, M., Croce, L.D., 2007. Chromatin structure and epigenetics. Biol. Reprod, 72(11):1563-1569.
[42]Ramji, D.P., Foka, P., 2002. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem. J., 365:561-575.
[43]Rosen, E.D., MacDougald, O.A., 2006. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol., 7(12):885-896.
[44]Rotman, N., Zofia, H.T., Lucke, S., Feige, J., Gelman, L., Desvergne, B., Wahli, W., 2008. PPAR disruption: cellular mechanisms and physiological consequences. Chimia, 62(5):340-344.
[45]Sakamoto, H., Kogo, Y., Ohgane, J., Hattori, N., Yagi, S., Tanaka, S., Shiota, K., 2008. Sequential changes in genome-wide DNA methylation status during adipocyte differentiation. Biochem. Biophys. Res. Commun., 366(2):360-366.
[46]Salma, N., Xiao, H., Mueller, E., Imbalzano, A.N., 2004. Temporal recruitment of transcription factors and SWI/SNF chromatin-remodeling enzymes during adipogenic induction of the PPARγ nuclear hormone receptor. Mol. Cell. Biol., 24(11):4651-4663.
[47]Salma, N., Xiao, H., Imbalzano, A.N., 2006. Temporal recruitment of C/EBPs to early and late adipogenic promoters in vivo. J. Mol. Endocrinol., 36(1):139-151.
[48]Sarruf, D.A., Iankova, I., Abella, A., Assou, S., Miard, S., Fajas, L., 2005. Cyclin D3 promotes adipogenesis through activation of PPARγ. Mol. Cell. Biol., 25(22):9985-9995.
[49]Scimè, A., Grenier, G., Huh, M.S., Gillespie, M.A., Bevilacqua, L., Harper, M.E., Rudnicki, M., 2005. Rb and p107 regulate preadipocyte differentiation into white versus brown fat through repression of PGC-1α. Cell Metab., 2(5):283-295.
[50]Tang, Q.Q., Otto, T.C., Lane, M.D., 2003. CCAAT/enhancer-binding protein β is required for mitotic clonal expansion during adipogenesis. PNAS, 100(3):850-855.
[51]Tang, Q.Q., Gronborg, M., Huang, H., Kim, J.W., Otto, T.C., Pandey, A., Lane, M.D., 2005. Sequential phosphorylation of C/EBPβ by MAPK and GSK3β is required for adipogenesis. PNAS, 102(28):9766-9771.
[52]Wang, G.L., Shi, X., Salisbury, E., Sun, Y., Albrecht, J.H., Smith, R.G., Timchenko, N.A., 2006. Cyclin D3 maintains growth-inhibitory activity of C/EBPα by stabilizing C/EBPα-cdk2 and C/EBPα-Brm complexes. Mol. Cell. Biol., 26(7):2570-2582.
[53]Xie, Y., Zhou, X.P., Zhang, Z.K., Qi, Y.J., 2002. Tobacco curly shoot virus isolated in Yunnan is a distinct species of Begomovirus. Chin. Sci. Bull., 47(3):197-200.
[54]Yang, L.H., Chen, T.M., Yu, S.T., Chen, Y.R., 2007. Olanzapine induces SREBP-1-related adipogenesis in 3T3-L1 cells. Pharmacol. Res., 56(3):202-208.
[55]Yokomori, N., Tawata, M., Onaya, T., 2002. DNA demethylation modulates mouse leptin promoter activity during the differentiation of 3T3-L1 cells. Diabetologia, 45(1):140-148.
[56]Yu, C., Markan, K., Temple, K.A., Deplewski, D., Brady, M.J., Cohen, R.N., 2005. The nuclear receptor corepressors NCoR and SMRT decrease PPARγ transcriptional activity and repress 3T3-L1 adipogenesis. J. Biol. Chem., 280(14):13600-13605.
[57]Zuo, Y., Qiang, L., Farmer, S.R., 2006. Activation of C/EBPα expression by C/EBPβ during adipogenesis requires a PPARγ-associated repression of HDAC1 at the C/EBPα gene promoter. J. Biol. Chem., 281(12):7960-7967.
Open peer comments: Debate/Discuss/Question/Opinion
<1>
Charles @Doctor<realidad\_13@hotmail.com>
2011-02-17 10:23:09
very good