CLC number:
On-line Access: 2024-06-24
Received: 2023-05-08
Revision Accepted: 2023-08-09
Crosschecked: 2024-06-24
Cited: 0
Clicked: 709
Miao CHU, Guangdong CHEN, Kai CHEN, Pengfei ZHU, Zhen WANG, Zhonglai QIAN, Huaqiang TAO, Yaozeng XU, Dechun GENG. Heme oxygenase 1 linked to inactivation of subchondral osteoclasts in osteoarthritis[J]. Journal of Zhejiang University Science B, 2024, 25(6): 513-528.
@article{title="Heme oxygenase 1 linked to inactivation of subchondral osteoclasts in osteoarthritis",
author="Miao CHU, Guangdong CHEN, Kai CHEN, Pengfei ZHU, Zhen WANG, Zhonglai QIAN, Huaqiang TAO, Yaozeng XU, Dechun GENG",
journal="Journal of Zhejiang University Science B",
volume="25",
number="6",
pages="513-528",
year="2024",
publisher="Zhejiang University Press & Springer",
doi="10.1631/jzus.B2300303"
}
%0 Journal Article
%T Heme oxygenase 1 linked to inactivation of subchondral osteoclasts in osteoarthritis
%A Miao CHU
%A Guangdong CHEN
%A Kai CHEN
%A Pengfei ZHU
%A Zhen WANG
%A Zhonglai QIAN
%A Huaqiang TAO
%A Yaozeng XU
%A Dechun GENG
%J Journal of Zhejiang University SCIENCE B
%V 25
%N 6
%P 513-528
%@ 1673-1581
%D 2024
%I Zhejiang University Press & Springer
%DOI 10.1631/jzus.B2300303
TY - JOUR
T1 - Heme oxygenase 1 linked to inactivation of subchondral osteoclasts in osteoarthritis
A1 - Miao CHU
A1 - Guangdong CHEN
A1 - Kai CHEN
A1 - Pengfei ZHU
A1 - Zhen WANG
A1 - Zhonglai QIAN
A1 - Huaqiang TAO
A1 - Yaozeng XU
A1 - Dechun GENG
J0 - Journal of Zhejiang University Science B
VL - 25
IS - 6
SP - 513
EP - 528
%@ 1673-1581
Y1 - 2024
PB - Zhejiang University Press & Springer
ER -
DOI - 10.1631/jzus.B2300303
Abstract: osteoarthritis (OA) is a chronic progressive osteoarthropathy in the elderly. osteoclast activation plays a crucial role in the occurrence of subchondral bone loss in early OA. However, the specific mechanism of osteoclast differentiation in OA remains unclear. In our study, gene expression profiles related to OA disease progression and osteoclast activation were screened from the Gene Expression Omnibus (GEO) repository. GEO2R and Funrich analysis tools were employed to find differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses demonstrated that chemical carcinogenesis, reactive oxygen species (ROS), and response to oxidative stress were mainly involved in osteoclast differentiation in OA subchondral bone. Furthermore, fourteen DEGs that are associated with oxidative stress were identified. The first ranked differential gene, heme oxygenase 1 (HMOX1), was selected for further validation. Related results showed that osteoclast activation in the pathogenesis of OA subchondral bone is accompanied by the downregulation of HMOX1. carnosol was revealed to inhibit osteoclastogenesis by targeting HMOX1 and upregulating the expression of antioxidant protein in vitro. Meanwhile, carnosol was found to alleviate the severity of OA by inhibiting the activation of subchondral osteoclasts in vivo. Our research indicated that the activation of osteoclasts due to subchondral bone redox dysplasia may serve as a significant pathway for the advancement of OA. Targeting HMOX1 in subchondral osteoclasts may offer novel insights for the treatment of early OA.
[1]AbramoffB, CalderaFE, 2020. Osteoarthritis: pathology, diagnosis, and treatment options. Med Clin North Am, 104(2):293-311.
[2]AgidigbiTS, KimC, 2019. Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS-mediated osteoclast diseases. Int J Mol Sci, 20(14):3576.
[3]AlmeidaM, PorterRM, 2019. Sirtuins and FoxOs in osteoporosis and osteoarthritis. Bone, 121:284-292.
[4]AndreevD, LiuMD, WeidnerD, et al., 2020. Osteocyte necrosis triggers osteoclast-mediated bone loss through macrophage-inducible C-type lectin. J Clin Invest, 130(9):4811-4830.
[5]ApelK, HirtH, 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, 55:373-399.
[6]BijlsmaJW, BerenbaumF, LafeberFP, 2011. Osteoarthritis: an update with relevance for clinical practice. Lancet, 377(9783):2115-2126.
[7]BoyceBF, 2013. Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res, 92(10):860-867.
[8]BoyleWJ, SimonetWS, LaceyDL, 2003. Osteoclast differentiation and activation. Nature, 423(6937):337-342.
[9]CaiP, YanSC, LuY, et al., 2022. Carnosol inhibits osteoclastogenesis in vivo and in vitro by blocking the RANKL-induced NF-κB signaling pathway. Mol Med Rep, 26:225.
[10]CapparielloA, MauriziA, VeeriahV, et al., 2014. The great beauty of the osteoclast. Arch Biochem Biophys, 558:70-78.
[11]ChenYZ, LuJW, LiSH, et al., 2020. Carnosol attenuates RANKL-induced osteoclastogenesis in vitro and LPS-induced bone loss. Int Immunopharmacol, 89:106978.
[12]CuiZ, CraneJ, XieH, et al., 2016. Halofuginone attenuates osteoarthritis by inhibition of TGF-β activity and H-type vessel formation in subchondral bone. Ann Rheum Dis, 75(9):1714-1721.
[13]DrissiH, SanjayA, 2016. The multifaceted osteoclast; far and beyond bone resorption. J Cell Biochem, 117(8):1753-1756.
[14]GlassonSS, BlanchetTJ, MorrisEA, 2007. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthritis Cartilage, 15(9):1061-1069.
[15]Glyn-JonesS, PalmerAJR, AgricolaR, et al., 2015. Osteoarthritis. Lancet, 386(9991):376-387.
[16]GuoYN, CuiSJ, TianYJ, et al., 2022. Chondrocyte apoptosis in temporomandibular joint osteoarthritis promotes bone resorption by enhancing chemotaxis of osteoclast precursors. Osteoarthritis Cartilage, 30(8):1140-1153.
[17]HuSL, ZhangCW, NiLB, et al., 2020. Stabilization of HIF-1α alleviates osteoarthritis via enhancing mitophagy. Cell Death Dis, 11(6):481.
[18]HuWH, ChenYQ, DouC, et al., 2021. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis, 80(4):413-422.
[19]KarsdalMA, Bay-JensenAC, LoriesRJ, et al., 2014. The coup
[20]ling of bone and cartilage turnover in osteoarthritis: opportunities for bone antiresorptives and anabolics as potential treatments? Ann Rheum Dis, 73(2):336-348.
[21]KimMJ, KimHS, LeeS, et al., 2021. Hexosamine biosynthetic pathway-derived O-GlcNAcylation is critical for RANKL-mediated osteoclast differentiation. Int J Mol Sci, 22(16):8888.
[22]KimballJS, JohnsonJP, CarlsonDA, 2021. Oxidative stress and osteoporosis. J Bone Jt Surg, 103(15):1451-1461.
[23]LepetsosP, PapavassiliouKA, PapavassiliouAG, 2019. Redox and NF-κB signaling in osteoarthritis. Free Radical Biol Med, 132:90-100.
[24]LiB, ChenKZ, QianND, et al., 2021. Baicalein alleviates osteoarthritis by protecting subchondral bone, inhibiting angiogenesis and synovial proliferation. J Cell Mol Med, 25(11):5283-5294.
[25]LiGY, YinJM, GaoJJ, et al., 2013. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther, 15(6):223.
[26]LiuXH, JiCX, XuL, et al., 2018. Hmox1 promotes osteogenic differentiation at the expense of reduced adipogenic differentiation induced by BMP9 in C3H10T1/2 cells. J Cell Biochem, 119(7):5503-5516.
[27]LoeserRF, OlexAL, McNultyMA, et al., 2013. Disease progression and phasic changes in gene expression in a mouse model of osteoarthritis. PLoS ONE, 8:e54633.
[28]Martel-PelletierJ, BarrAJ, CicuttiniFM, et al., 2016. Osteoarthritis. Nat Rev Dis Primers, 2:16072.
[29]PereiraM, PetrettoE, GordonS, et al., 2018. Common signalling pathways in macrophage and osteoclast multinucleation. J Cell Sci, 131(11):jcs216267.
[30]SakamotoH, SakaiE, FumimotoR, et al., 2012. Deltamethrin inhibits osteoclast differentiation via regulation of heme oxygenase-1 and NFATc1. Toxicol Vitro, 26(6):817-822.
[31]SchipperHM, SongW, TavitianA, et al., 2019. The sinister face of heme oxygenase-1 in brain aging and disease. Prog Neurobiol, 172:40-70.
[32]ShenC, GaoM, ChenHM, et al., 2021. Reactive oxygen species (ROS)-responsive nanoprobe for bioimaging and targeting therapy of osteoarthritis. J Nanobiotechnol, 19:395.
[33]ShiYF, ChenJX, LiSL, et al., 2022. Tangeretin suppresses osteoarthritis progression via the Nrf2/NF-κB and MAPK/NF-κB signaling pathways. Phytomedicine, 98:153928.
[34]SuWP, LiuGQ, MohajerB, et al., 2022. Senescent preosteoclast secretome promotes metabolic syndrome associated osteoarthritis through cyclooxygenase 2. eLife, 11:e79773.
[35]TaoHQ, LiWM, ZhangW, et al., 2021. Urolithin A suppresses RANKL-induced osteoclastogenesis and postmenopausal osteoporosis by, suppresses inflammation and downstream NF-κB activated pyroptosis pathways. Pharmacol Res, 174:105967.
[36]TateiwaD, YoshikawaH, KaitoT, 2019. Cartilage and bone destruction in arthritis: pathogenesis and treatment strategy: a literature review. Cells, 8(8):818.
[37]WangG, WangYN, YangQZ, et al., 2022. Metformin prevents methylglyoxal-induced apoptosis by suppressing oxidative stress in vitro and in vivo. Cell Death Dis, 13:29.
[38]WangXY, YamauchiK, MitsunagaT, 2020. A review on osteoclast diseases and osteoclastogenesis inhibitors recently developed from natural resources. Fitoterapia, 142:104482.
[39]XiaBJ, ChenD, ZhangJS, et al., 2014. Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int, 95(6):495-505.
[40]YamaguchiY, SakaiE, SakamotoH, et al., 2014. Inhibitory effects of tert-butylhydroquinone on osteoclast differentiation via up-regulation of heme oxygenase-1 and down-regulation of HMGB1 release and NFATc1 expression. J Appl Toxicol, 34(1):49-56.
[41]YangC, TaoHQ, ZhangHF, et al., 2022. TET2 regulates osteoclastogenesis by modulating autophagy in OVX-induced bone loss. Autophagy, 18(12):2817-2829.
[42]ZhuCY, ShenSW, ZhangSH, et al., 2022. Autophagy in bone remodeling: a regulator of oxidative stress. Front Endocrinol, 13:898634.
[43]ZhuSA, ZhuJX, ZhenGH, et al., 2019. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J Clin Invest, 129(3):1076-1093.
[44]ZhuXB, ChanYT, YungPSH, et al., 2021. Subchondral bone remodeling: a therapeutic target for osteoarthritis. Front Cell Dev Biol, 8:607764.
[45]ZorovDB, JuhaszovaM, SollottSJ, 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev, 94(3):909-950.
Open peer comments: Debate/Discuss/Question/Opinion
<1>